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Summary

Combustion can be defined as a fast oxidation process of a solid, gaseous or liquid
fuel at elevated temperatures. In any combustion process, ignition plays an essential
role. Not only to initiate the combustion process, but also to maintain it. Especially
in solid fuel combustion on a grate, where fuel is abundantly available, the ignition of
the fresh fuel determines the stability of the combustion process. To be able to control
the combustion process properly, the understanding of the ignition processes of solid
fuels is of great importance.

For modeling purposes, the ignition of a solid fuel layer on a grate is often described
by an ignition front traveling downwards through the fuel bed. The waste layer ignites
from the top due to furnace and flame radiation, thus the combustion process takes
place over the length of the grate. However, as there is almost no mixing of the solid
fuel over the length of the grate, the process can be considered as a horizontal plug-
flow process. For this reason the combustion process on the grate can be translated to
a packed bed where the length coordinate of the moving grate corresponds with the
time in the packed bed process. The packed bed can be modeled as a transient one di-
mensional model. Generally, to validate these one dimensional models, results from
experiments in so called "pot furnaces" are used. In these experiments waste or an
other solid fuel is piled on a fixed grate in a round tube and ignited from the top while
air is fed via the grate and flowing upwards through the fuelbed. Thermocouples and
gas sampling points at several heights in the fuelbed can be used to monitor the pro-
cess. In case of a homogeneous fuel, at every height in the layer a subsequent sharp
rise in temperature is measured going from the top to the bottom of the reactor. From
these data, a fairly constant ignition front velocity can be derived. However, in the
present work it is shown that one dimensional models based on a homogeneous fuel
under-predict the velocity of the ignition front in waste by a factor of two. Apparently,
not all phenomena which are important in waste combustion on a moving grate are
captured in these simplified one dimensional models. This thesis deals with some of
these ignition phenomena encountered in the combustion of municipal solid waste
and biomass on a moving grate.

Solid fuels such as biomass and waste both contain fixed carbon and a large part
of volatiles (more than 70 wt.%). The volatiles combustion should be considered as
the combustion of a gaseous fuel, while the fixed carbon combustion can be consid-
ered as the combustion of solid (char) particles. Chapter 2 investigates the impact of
gaseous combustion in a packed bed. To eliminate the reactions in the solid phase,
natural gas combustion in an inert solid phase is considered. The chapter deals with
the case where the combustion takes place inside the packed bed. This process is
called filtration combustion and can be characterized by a thermal wave and a com-
bustion wave. An analytical model from the literature is used to investigate the in-



fluence of different parameters such as gas composition, gas velocity, bed porosity
and particle diameter on the propagation of the combustion front. The results are
validated by experimental results. For these experiments a tube filled with alumina
spheres is used. A premixed flammable gas mixture is fed through the packed bed
and ignited in the lower region of the tube. Thermocouples at several heights moni-
tor the combustion process. The trends found from the analytical model can be com-
pared well with the experimental results. It is shown that the combustion wave travels
downwards much slower than the combustion fronts generally measured in burning
solid fuel beds. It is also shown that flashback is very unlikely to occur in waste com-
bustion.

The one dimensional approach mentioned before can only be applied if the horizon-
tal mass and energy gradients along the grate can be neglected. With the help of the
Péclet number, it is shown in chapter 3 that the horizontal energy gradients can not al-
ways be neglected. As a result the ignition front propagation through a packed bed is
divided in a horizontal direction and a vertical direction. The horizontal front propa-
gation determines the flame stability in the furnace and the vertical front propagation
determines the burnout of the fuel. Based on optical observations of ignition fronts
and gas composition measurements below the ignition front it is concluded that the
driving mechanism of the front propagation in both horizontal and vertical directions
is char combustion (for low radiative heat fluxes from the furnace walls). This implies
that the volatile combustion can be neglected, which simplifies the modeling of the
ignition front propagation significantly. With this result, an analytical one dimen-
sional model for the velocity of the ignition front is derived. The calculated ignition
front velocity and combustion front temperature are a function of a dimensionless
energy loss term and a dimensionless excess energy term. Based on these terms, up-
per and lower boundaries for the ignition front velocity are derived. The model is val-
idated with experiments from the literature done by several researchers. The model
can be applied to both horizontal and vertical directions when furnace radiation is
low.

To investigate the possibility to ignite the fuel by preheated primary air, experiments
are carried out in a pot furnace. In these experiments, a preheated primary air flow is
fed into a shallow packed bed of either wood, RDF or char. The critical air temperature
needed to ignite the bed and the corresponding bed temperature at the moment of ig-
nition are recorded as a function of the primary air flow. In chapter 4, it is shown that
a fuel bed of wood can be ignited solely by a primary air stream with a temperature
as low as 230oC . A fuel bed of char ignites even with a primary air temperature as low
as 170oC . For lower primary air velocities, both the critical air temperature and the
bed temperature at ignition decrease. A remarkable observation is that with a deep
fuelbed the ignition does not occur close to the grate, but 20−35cm above the grate.
This can be explained by taking conduction inside the bed into account. The obtained



experimental results are translated into a spontaneous ignition model in chapter 5.
The model is based on Semenov’s analysis of thermal explosions and consists of the
balance between the exothermic pyrolysis reactions and the convective heat transfer
of the preheated primary air to the fuel. A single dimensionless parameter is derived
which determines the critical air temperature and the fuel bed temperature at igni-
tion as a function of the primary air velocity, the inert fraction and the fuel type. The
results from the model agree well with the results from the experiments for wood and
RDF. With the presented theory, the ignition phenomena occurring during char ex-
periments can only be explained qualitatively. It seems plausible to assume that the
temperature at which the heat of reaction of char oxidation becomes exothermic co-
incides with the spontaneous ignition temperature.

Chapter 6 deals with the startup of a waste incinerator. This is done by investigat-
ing the piloted ignition of several solid fuels such as wood, PVC and PMMA under a
radiative heat flux. A model is developed to predict the ignition times for several ma-
terials and radiative heat fluxes. The model is based on the ignition temperature of
the produced gas mixture at its lower explosion limit. From the energy balance at the
moment of the pilot, it is calculated if the mixture can reach its ignition temperature
at a certain time, called the ignition time. Experiments from the literature are used to
validate the model and flashes observed during these experiments can be explained
qualitatively by the model. Subsequently, the model is further developed to a full-
scale furnace and it is shown that there is a critical primary air flow with respect to
ignition. When the primary air flow is higher than this critical value, ignition can not
be obtained. This is due to the fact that the produced gas mixture is not able to reach
its lower flammability limit for high air flows.

In chapter 7 the results from the present study are summarized and used to describe
the ignition and combustion phenomena in full-scale waste incinerators. A simpli-
fied expression for the ignition front velocity in both the horizontal and vertical direc-
tion is presented and applied to determine local front velocities based on local fuel
properties. The local front velocities are integrated over the bed height to obtain the
location where the front reaches the grate. It is shown that this two-dimensional igni-
tion front model predicts the ignition front to be up to twice as steep as predicted by a
one-dimensional model. In this chapter also guidelines for startup of moving bed fur-
naces are given. It is advised to start with a fuel which ignites easily under a pilot and
is able to maintain an ignition front. Recommendations for further research are (1)
to validate the translations done in the current work to full scale waste and biomass
combustion and (2) to apply the results to a full scale combustion process.



Samenvatting

Verbranding kan worden gedefinieerd als een snelle oxidatiereactie van een vaste,
gasvormige of vloeibare brandstof op een hoge temperatuur. In elk verbrandingspro-
ces speelt ontsteking een essentiële rol. Dit is niet alleen om het proces te starten,
maar ook om het in stand te houden. Vooral bij vaste stof verbranding op een rooster,
waar de brandstof volop aanwezig is, bepaalt de ontsteking de stabiliteit van het ver-
brandingsproces. Om het proces goed te kunnen regelen, is kennis van ontsteking
van groot belang.

Voor het modelleren wordt de ontsteking van een vaste brandstoflaag op een rooster
vaak beschreven door een ontstekingsfront dat omlaag beweegt door de brand-
stoflaag. De brandstoflaag wordt aan de bovenkant ontstoken door oven- en vlam-
straling, dus de verbranding vindt plaats over de lengte van het rooster. Echter, om-
dat de afvallaag bijna niet gemengd wordt over de lengte van het rooster kan het pro-
ces beschouwd worden als een horizontaal propstroom proces. Daarom kan het ver-
brandingsproces op het rooster vertaald worden naar een gepakt bed waar de lengte-
coördinaat van het bewegende rooster overeenkomt met de tijd in het gepakt bed. Het
gepakte bed kan gemodelleerd worden met een transiënt ééndimensionaal model.
Meestal worden deze modellen gevalideerd met resultaten van experimenten in zoge-
naamde "pot ovens". Bij deze experimenten wordt afval of een andere vaste brandstof
in een buis op een vast rooster gestort. Deze brandstoflaag wordt aan de bovenkant
ontstoken en lucht wordt via het rooster van onder naar boven door de brandstoflaag
gevoerd. Op verschillende hoogtes in de buis kunnen thermokoppels en gasmonster-
punten gebruikt worden om het proces te monitoren. Bij een homogene brandstof
wordt op elke hoogte van de brandstoflaag, van boven naar beneden, een opeenvol-
gende scherpe toename van de temperatuur gemeten. Uit deze data kan een vrij con-
stante snelheid van het ontstekingsfront afgeleid worden. Echter, het huidige werk
laat zien dat de ééndimensionale modellen gebaseerd op een homogene brandstof
de ontstekingsfrontsnelheid in een afvalverbrandingsoven met een factor twee onder-
schatten. Blijkbaar worden niet alle fenomenen die belangrijk zijn in afvalverbrand-
ing op een rooster beschreven met deze vereenvoudigde ééndimensionale modellen.
Deze dissertatie beschrijft sommige van de ontstekingsverschijnselen die plaats vin-
den in afval- en biomassaverbranding op een rooster.

Vaste brandstoffen zoals biomassa en afval bevatten beiden gebonden koolstof en
hebben een hoog vluchtig gehalte (meer dan 70 gewichts-%). De verbranding van
de vluchtige componenten kan worden beschouwd als de verbranding van een
gasvormige brandstof en de gebonden koolstofverbranding kan worden beschouwd
als de verbranding van vaste (kool) deeltjes. Hoofdstuk 2 onderzoekt de invloed van
de verbranding van gassen in een gepakt bed. Om de reacties in de vaste fase te elimi-
neren, wordt de verbranding van aardgas in een inert gepakt bed beschouwd. Het



hoofdstuk beschouwt de situatie waar de verbranding in het gepakte bed plaatsvindt.
Dit proces wordt filtratieverbranding genoemd en het wordt gekarakteriseerd door
een thermische golf en een verbrandingsgolf. Een analytisch model uit de literatuur
is gebruikt om de invloed van verschillende parameters zoals gassamenstelling,
gassnelheid, porositeit van het bed en deeltjesgrootte van het bedmateriaal op de
voortgang van het verbrandingsfront te onderzoeken. De resultaten zijn gevalideerd
met experimentele resultaten. Voor deze experimenten is een met aluminakorrels ge-
vulde buis gebruikt. Een voorgemengd brandbaar gasmengsel wordt door de buis met
het gepakte alumina geleid en wordt in de onderste zone van de buis ontstoken. Op
verschillende hoogtes monitoren thermokoppels het verbrandingsproces. De trends
die gevonden zijn met het analytische model komen goed overeen met de trends die
gevonden zijn met de experimenten. Het is aangetoond dat de verbrandingsgolf in
deze situatie veel langzamer naar beneden beweegt dan de verbrandingsgolf in een
brandend bed van vaste brandstof. Het is ook aangetoond dat het zeer onwaarschijn-
lijk is dat terugslag van vlammen plaatsvindt in afvalverbranding.

De ééndimensionale benadering die hiervoor genoemd is kan alleen toegepast wor-
den als de horizontale massa- en energiegradiënten parallel aan het rooster verwaar-
loosd kunnen worden. In hoofdstuk 3 is het aan de hand van het Pécletnummer
aangetoond dat de horizontale energiegradiënt niet altijd verwaarloosd kan worden.
De voortgang van het ontstekingsfront is daarom opgedeeld in een horizontale en een
verticale richting. De horizontale frontverplaatsing bepaalt de stabiliteit van de vlam
en de verticale verplaatsing bepaalt de mate van uitbrand van de brandstof. Uit op-
tische observaties van ontstekingsfronten en uit gemeten gassamenstelling onder het
ontstekingsfront is geconcludeerd dat de vaste koolverbranding het drijvende mecha-
nisme is voor de frontvoortgang in beide richtingen (voor lage warmtestralingsfluxen
van de oven). Dit houdt in dat de verbranding van de vluchtige componenten in de
gasfase verwaarloosd kan worden. Dit vereenvoudigt het modelleren van de voort-
gang van het ontstekingsfront aanzienlijk. Met dit resultaat is een ééndimension-
aal analytisch model afgeleid voor de snelheid van het ontstekingsfront. De bere-
kende frontsnelheid en temperatuur van het verbrandingsfront zijn een functie van
een dimensieloze energieverliesterm en een energieoverschotterm. Een boven- en
een ondergrens voor de frontsnelheid zijn afgeleid op basis van deze twee termen.
Het model is gevalideerd met experimenten uit de literatuur die zijn gedaan door ver-
schillende onderzoekers. Wanneer de warmtestraling van de oven laag is, kan het
model toegepast worden op zowel de verticale als de horizontale voortgang van het
ontstekingsfront.

Om de mogelijkheid om de brandstof te ontsteken met voorverwarmde primaire
lucht te onderzoeken, zijn experimenten in een pot oven uitgevoerd. Bij deze experi-
menten is een voorverwarmde primaire luchtstroom door een ondiep gepakt bed van
hout, RDF of vaste koolstof gevoerd. De kritische temperatuur van de lucht waar-



bij de ontsteking plaatsvindt en de temperatuur van het brandstofbed bij ontsteking
zijn gemeten als functie van de primaire luchtstroom. Het is in hoofdstuk 4 aange-
toond dat een gepakt bed van hout kan worden ontstoken door een luchtstroom
met een temperatuur van slechts 230oC . Een gepakt bed van vaste kool kan zelfs
ontsteken bij een luchttemperatuur van 170oC . De kritische temperatuur van de
lucht en de temperatuur van het brandstofbed bij ontsteking nemen af bij lagere pri-
maire luchtsnelheden. Een opvallende waarneming is dat bij een diep brandstofbed
de ontsteking niet vlakbij het rooster, maar 20−35mm boven het rooster plaatsvindt.
Dit kan worden verklaard door warmtegeleiding in het brandstofbed te beschouwen.
In hoofdstuk 5 zijn de experimentele resultaten vertaald naar een model van spon-
tane ontsteking. Het model is gebaseerd op Semenov’s analyse van thermisch ex-
plosies en bestaat uit de balans tussen de exotherme pyrolysereacties en de convec-
tieve warmteoverdracht van de voorverwarmde lucht naar de brandstof. Er is één
dimensieloze parameter afgeleid die de kritische temperatuur van de lucht en de
temperatuur van het brandstofbed bij ontsteking bepaalt als functie van de primaire
luchtstroom, inertgehalte van de brandstof en het type brandstof. De resultaten van
het model komen goed overeen met de experimentele resultaten voor hout en RDF.
Met het gepresenteerde model kunnen de verschijnselen tijdens de experimenten
met vaste koolstof alleen kwalitatief verklaard worden. Het lijkt aannemelijk dat de
temperatuur waarbij de reactie van de vaste kool met lucht van endo- naar exotherm
gaat, samenvalt met de spontane ontstekingstemperatuur.

Hoofdstuk 6 beschouwt het opstarten van een afvalverbrandingsinstallatie. Dit is
gedaan door de ontsteking met hulp van een ontstekingsbron (bijvoorbeeld een
vonk of een laserpuls) van verschillende materialen zoals hout, PVC en PMMA die
aangestraald worden door een warmtestralingsbron te onderzoeken. Er is een model
afgeleid dat de tijd die nodig is voor ontsteking voor verschillende materialen als func-
tie van de stralingsflux berekent. Het model is gebaseerd op de ontstekingstempe-
ratuur van het geproduceerde gasmengsel wanneer dat op zijn laagste explosiegrens
is. Met de energiebalans op het moment van de vonk is te bepalen of het mengsel
de ontstekingstemperatuur bereikt op een zeker tijdstip: de ontstekingstijd. Experi-
menten uit de literatuur zijn gebruikt om het model te valideren en de flitsen die
zijn waargenomen in deze experimenten kunnen kwalitatief worden verklaard met
het model. Vervolgens is het model doorontwikkeld voor ovens op ware grootte en
is het aangetoond dat er een kritische primaire luchtstroom met betrekking tot de
ontsteking bestaat. Als de luchtstroom groter is dan deze kritische waarde, zal het
geproduceerde gasmengsel zijn laagste explosiegrens niet kunnen bereiken en zal er
ook geen ontsteking plaatsvinden.

In hoofdstuk 7 zijn de resultaten van de huidige studie samengevat en gebruikt om
de ontstekings- en verbrandingsverschijnselen in afvalverbrandingsovens van ware
grootte te beschrijven. Er is een vereenvoudigde vergelijking afgeleid voor de snel-



heid van het ontstekingsfront in zowel de horizontale als de verticale richting. Deze
vergelijking is gebruikt om met lokale eigenschappen van het brandstofbed lokale
frontsnelheden te bepalen. Om de locatie te vinden waar het ontstekingsfront het
rooster raakt, zijn deze lokale frontsnelheden geïntegreerd over de hoogte van het
brandstofbed. Het is aangetoond dat dit tweedimensionale model van het ontste-
kingsfront een tot twee keer zo stijl front voorspelt als een ééndimensionaal model. In
dit hoofdstuk zijn ook richtlijnen voor het opstarten van een afvalverbrandingsoven
gegeven. Het advies is gegeven om te beginnen met een licht ontvlambare brandstof
waarin ook een ontstekingsfront kan bestaan. Aanbevelingen voor verder onderzoek
zijn onderverdeeld in (1) validatie van de vertalingen die gedaan zijn naar ovens van
ware grootte en (2) toepassen van de resultaten op ovens van ware grootte.
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What is this all about? That is the central question in this first chapter.
It will give the reader an introduction on the context and goals of the
research described in this thesis.

1
Introduction
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1.1 Introduction

1.1 Introduction

Worldwide, more and more waste is produced. In Europe the amount of municipal
waste produced, increases two percent every year with a total amount of 243 million
tonnes in 2003 [53]. This means that on average each European inhabitant produces
about 530 kilogram of municipal waste per year. The treatment of this waste differs
largely from country to country as can be seen in figure 1.1. This has to do with the
local composition of the waste, the available space for landfilling and national legis-
lation on waste management.
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Figure 1.1: The municipal waste treatment of several European countries for 2002. [53]

Despite the long history in regulated waste treatment, which goes back to (and even
before) the ancient Israelites, it lasted till the seventies of the previous century before
waste treatment was regulated on a large scale. In 1979 the Dutch member of par-
liament Ad Lansink proposed a preferred order of treatment methods. This so called
"Ladder van Lansink" (ladder of Lansink) consists of the following steps, in which
prevention is the most favorable option:

1. prevention

2. re-use

3. recycling

4. incineration

5. landfill

Still, the Dutch waste policy is based on this ranking. Also in other European coun-
tries and on European scale similar rankings are used since the seventies and eighties.
Unless this generally accepted ranking, a lot of waste is still landfilled as can be seen
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in figure 1.1. However, the figure does not include the most preferable option of pre-
vention which is hard to measure. In practice, not all waste can be prevented or is
re-usable or recyclable. Moreover, for some waste components the environmental
impact of incineration in modern incineration plants is less than the one for re-use or
recycling. This shows the need for clean and effective incineration plants as a suitable
and environmentally friendly alternative for re-use and recycling.

1.2 Waste incineration plants

The first waste incineration plant was erected in 1874 in Nottingham (UK) [10]. Before
this time, waste was burned, but not systematically in a plant designed for this. From
this moment, many of these waste incinerators are built in the UK and around the
year 1900, 210 plants were built [72]. A drawing of such a waste incinerator can be
seen in figure 1.2.

1

2

3

4

5

6

7
8

Figure 1.2: An old waste incineration plant. 1-Waste feed channel; 2-Pre-drying zone; 3-Fixed
grate; 4-Cooled cast iron walls; 5-Flue gas pass; 6-Ash and stoking opening; 7-Ash chute; 8-
Combustion air opening. [72]

The inclined grate technology used in these first waste incineration plants is still used
nowadays in the most advanced plants. While the grates used before were fixed, al-
most all grates used nowadays are moving. Figure 1.3 shows a modern municpal solid
waste incineration plant. The figure shows that the furnace is only a small part of the
entire plant. The largest part is the flue gas cleaning system. The policy of the Afval
Energie Bedrijf nicely shows the changing trends in waste management. They treat
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1.2 Waste incineration plants

the waste as a raw material to produce energy and useful materials. The materials
resulting from the combustion and flue gas cleaning are used useful as much as pos-
sible. They state that from 1000 kg of waste only 5 kg can not be utilized and should
be landfilled [3].

Figure 1.3: A modern waste incineration plant in Amsterdam. Adopted from [90]

When we focus on the furnace two main differences can be distinguished between
several plants. First, several types of grates can be applied and second, different fur-
nace geometries are in use. Most of the applied grates consist of rows of bars which
move either against the waste flow (reverse acting grate) or along the waste flow (for-
ward acting grate). Typically a forward acting grate is used when the grate is hori-
zontal and a reverse acting grate is used with an inclined grate. The movement of
the grate bars transports the waste through the furnace and results in good mixing of
the burning waste. The air needed for the combustion is either fed through openings
between the grate bars or through openings in the grate bars themselves. Also some
plants are equipped with a roller grate. This type of grate consists of about six large
slowly rotating rolls over which the waste is transported and mixed. In this case, the
combustion air is fed through openings between the rolls. Figure 1.4 shows the three
types of grates. A picture of a newly installed horizontal grate can be seen in figure

forward acting grate reverse acting grate roller grate

Figure 1.4: The three mainly used grates in waste incineration plants.
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Figure 1.5: A picture of a new horizontal forward acting grate. The waste enters at the back of
the picture and travels towards the viewer. The boiler tubes at the furnace walls can be seen as
well. Source: Martin GmbH für Umwelt- und Energietechnik

1.5. This picture also shows the vertical boiler tubes at the furnace walls.

Also three main types of furnace geometries can be distinguished. They differ in the
flue gas flow direction relative to the waste flow direction. The first type is called co-
flow or parallel flow. In this furnace the flue gases flow in the same direction as the
waste. In this furnace, the burnout of the flue gases is good because they pass the hot
combustion zone. The second type is called counter-flow. In this case the flue gases
flow upstream the waste and they help to dry and ignite the fresh fuel. Gas burnout
can be a problem in this type of furnace. The final type is the cross- flow or center-
flow furnace. In this furnace the flue gases flow normal to the waste direction. This
type is in between the co- and the counter-flow type. The three types can be seen in
figure 1.6.

The air needed for the combustion is fed through the grate, this air flow is called pri-
mary air. To enhance the burnout of the flue gases more air is fed into the furnace
above the fuel bed. This air stream is called secondary air. Next to the waste feed rate
and grate movement, these air flows are important values to control the combustion
process.

1.3 Developments in waste combustion

Due to an increasing awareness of the health and environmental impact of the waste
incineration more stringent regulations followed rapidly after each other both on Eu-
ropean and on national level. An overview of Dutch, German and Swiss emission di-
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1.3 Developments in waste combustion

counter-flowco-flow center-flow

Figure 1.6: The three mainly used furnace types in waste incineration plants.

rectives together with the European directive are listed in table 1.1. The increasingly

Table 1.1: Overview of emission legislation in Germany (TAL 74: Technische Anleitung Luft; 17
BImSchV: Bundes-Immissionsschutzgesetz), The Netherlands (RV 85: Richtlijn Verbranden; BLA:
Besluit Luchtemissies Afvalverbranding) and European Union.

Component TAL 74
(1974,
German)
[42]

17
BImSchV
(1990,
German)

RV 85
(1985,
Dutch)
[42]

BLA
(1993,
Dutch)

Directive
2000/76/EC
(2000, EU)

Total dust
(mg /m3)

100 10 50 5 10

HCl (mg /m3) 100 10 50 10 10
SO2 (mg /m3) - 50 - 40 50
HF (mg /m3) 5 1 3 1 1
NOx (mg /m3) - 200 - 70 200
Cx Hy (mg /m3) - 10 - 10 10
CO (mg /m3) 1000 50 - 50 100
Cd (mg /m3) 10 0.05 0.1 0.05 0.1
Hg (mg /m3) 10 0.03 0.1 0.05 0.05
Sum other heavy
metals (mg /m3)

125 0.5 5 0.5 0.5

PCDD/F (ng
T E/m3)

- 0.1 - 0.1 0.1

stringent legislation transformed the waste combustion plants to chemical plants and
half of the installation costs are needed for the flue gas cleaning equipment. The re-
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sult is that modern waste incineration plants are generally cleaner than fossil fuel fired
power plants.

To see the share of the hazardous emissions of waste incineration, table 1.2 compares
the emissions from waste incineration to some other sources of emissions. In gen-
eral, the emissions from waste incineration are only a fraction of the total emissions.
Despite the low share of waste incineration on air pollution the public opinion is still
that waste incinerators are dirty and especially dust (PM10), dioxins and heavy metals
are thought to be the main pollutants resulting from waste incineration. Indeed, up
to fifteen years ago waste incineration was strongly contributing to dust and heavy
metal emissions and is was even the main emitter of dioxins. However, due to the
legislation and technological development, the emissions of waste incinerators de-
creased drastically. It seems that the public resistance against waste incinerators can
not keep up with the fast technological development. But even when the emissions
can be reduced even further, prevention of waste should always be favorable.

Table 1.2: Emissions from waste incineration and some other sources in 2005. [66, 1, 2]

PCDD/F
(mg)

PM10
(kton)

Cu
(ton)

Hg
(kg)

NOx
(kton)

SO2
(kton)

Waste Incineration 0.70 0.029 0.088 159 2.1 0.18
Energy sector - 0.5 0.16 N/A 46 9.9
Traffic 1.34 20 69 34 332 70
Consumers 21.7 3.3 10 23 15 0.51
Fireworks - 0.15 74 N/A 0.021

(N2O)
N/A

Total 36.1 45 N/A >600 481 129

Also methods are developed and already in use to utilize the fly ash, bottom ash and
other residues from the incineration process. This results in a (almost) zero-waste
process in which only a small amount of the residue has to be landfilled. In this ap-
proach the waste is not only a fuel, but also a raw material. A pitfall of treating waste
like this is that it can hinder the prevention of waste.

Next to the trends in strongly reducing the emissions another trend that can be seen is
that waste incineration plants are more and more regarded as power plants instead of
waste treatment plants. Because about half of the combusted waste is biomass, also
half of the produced energy is CO2 neutral. Currently a lot of discussion on political
level is going on about the question whether energy from waste combustion is renew-
able or not. Also with the treating waste as a fuel, renewable or not, it can hinder the
prevention of waste. When this is kept in mind, the combustion of waste is a suitable
treatment method for waste.
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1.4 Ignition of the waste layer

1.4 Ignition of the waste layer

The ignition of the waste layer is not only important at the startup of the plant, but
also during continuous operation. The stability of the combustion process and the
burnout of the waste are defined by the ignition behaviour of the waste layer. Rogers
proposed a model for the several reaction zones in a burning fuel layer [74], this model
can be seen in figure 1.7. Rogers states that straight reaction and ignition fronts are
present in the burning fuel layer. His findings are based on one dimensional pot fur-
nace experiments which he translates to two dimensional fuel beds.

Figure 1.7: The reaction zones in a burning fuel layer as proposed by Rogers [74].

The pot furnace is a vertical tube with a porous grate at the bottom. This grate sup-
ports the fuel bed and air is fed through this grate. For an experiment, the tube is filled
with a solid fuel and ignited at the top. During the experiment, the fuel bed burns
slowly from the top to the bottom of the tube. Thermocouples at several heights in
the fuel bed monitor the ignition and combustion processes. The generally accepted
idea is that the results from the pot furnace can be translated to a two dimensional
fuel bed by correlating the time in the pot furnace to the location in the two dimen-
sional fuel bed by the vertical velocity of the fuel bed.

The one dimensional approach and the pot furnace are used more often by several
researchers [39, 46, 76, 31, 88, 100, 75] to determine the ignition speed in a packed fuel
bed as a function of process and fuel parameters. Also two dimensional experiments
are carried out in full scale [84] and pilot plants [34] to obtain insight in the ignition
and combustion processes. In the experiments a sharp ignition front which travels
downwards is found. Generally, the velocity of the ignition front is found to be in the
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order of 0.5 mm/s. This velocity depends mainly on moisture content and primary
air velocity. For high values of the moisture content or air velocity the ignition front
is extinguished. This ignition front can be measured in well defined fuel beds such
as packed wood pellets or other fairly homogeneous (on bed scale) fuels. However,
when inert is added or when different materials or fuel sizes are mixed, the ignition
front propagation can not be observed that clear. As an illustration figure 1.8 displays
the results from two pot furnace experiments presented by Ortmanns and Brem [64].
The temperature readings show that for wood a sharp and well defined ignition front
travels downwards. For simulated waste however, a clear ignition front can not be
distinguished.
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Figure 1.8: Temperatures at several heights in the fuel bed as a function of time [64].

As a result, when the derived models based on a sharp ignition front are applied on
waste combustion, the ignition front is predicted to reach the grate about halfway
the furnace. In practice, high temperature corrosion can be observed at the grate at
already one quarter of the length of the furnace.
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1.5 Scope of the thesis

1.5 Scope of the thesis

The derived models for the ignition front propagation based on a sharp and constant
moving ignition front are not able to describe the overall ignition processes in waste
combustion. However, these models can be successfully applied on biomass combus-
tion of a grate. Besides, the models give information on the physics encountered in
the ignition inside a packed fuel bed. For waste combustion there is still the need for
a model which can predict the ignition inside the highly inhomogeneous waste bed.
To develop such a model, first the physics behind the ignition should be discovered.

The combustion and ignition of a solid fuel such as waste can be divided in a gaseous
part and a solid part. Chapter 2 investigates the impact of gaseous combustion in a
packed bed. To eliminate the reactions in the solid phase, natural gas combustion in
an inert solid phase is considered. An analytical model from the literature is used to
investigate the influence of different parameters such as gas composition, gas veloc-
ity, bed porosity and particle diameter on the propagation of the flame. The results
are validated by experimental results. It is also shown that flashback is very unlikely
to occur in waste combustion and other phenomena seem to be important to the ig-
nition of waste on a grate.

Chapter 3 investigates the influence of two dimensional effects in the waste layer on
the ignition of this layer. The one dimensional approach mentioned before can only
be applied if the horizontal mass and energy gradients along the grate can be ne-
glected. With the help of the Péclet number, it is shown in chapter 3 that the hor-
izontal energy gradients can not always be neglected. As a result the ignition front
propagation through a packed bed is divided in a horizontal direction and a vertical
direction. An analytical one dimensional model for the velocity of the ignition front
is derived. The model is validated with experiments from the literature done by sev-
eral researchers. The model can be applied to both horizontal and vertical directions
when furnace radiation is low.

In chapter 4 the possibility to ignite the fuel by preheated air is investigated. There-
fore, experiments are carried out in a pot furnace. In these experiments, a preheated
primary air flow is fed into a shallow packed bed of either wood, RDF or char. The
critical air temperature needed to ignite the bed and the corresponding bed temper-
ature at the moment of ignition are recorded as a function of the primary air flow.
The obtained experimental results are translated into a spontaneous ignition model
in chapter 5. The model is based on Semenov’s analysis of thermal explosions and
consists of the balance between the exothermic pyrolysis reactions and the convec-
tive heat transfer of the preheated primary air to the fuel. The results from the model
agree well with the results from the experiments for wood and RDF. With the pre-
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sented theory, the ignition phenomena occurring during char experiments can only
be qualitatively explained.

Chapter 6 deals with the startup of a waste incinerator. This is done by investigating
the piloted ignition of several solid fuels such as wood, PVC and PMMA under a radia-
tive heat flux. A model is developed to predict the ignition times for several materials
and radiative heat fluxes. The model is based on the ignition temperature of the pro-
duced gas mixture at its lower explosion limit. Experiments from the literature are
used to validate the model and flashes observed during these experiments can quali-
tatively be explained by the model. Subsequently, the model is further developed to a
full-scale furnace.

In chapter 7 the results from the present study are summarized and used to describe
the ignition and combustion phenomena in full-scale waste incinerators. A simpli-
fied expression for the ignition front velocity in both the horizontal and vertical direc-
tion is presented and applied to determine local front velocities based on local fuel
properties. The local front velocities are integrated over the bed height to obtain the
location where the front reaches the grate. It is shown that this two-dimensional igni-
tion front model predicts the ignition front to be up to twice as steep as predicted by
a one-dimensional model. In this chapter also guidelines for startup of moving bed
furnaces are given. It is advised to start with a fuel which ignites easily under a pilot
and is able to maintain an ignition front.
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In this chapter, measurements and a mathematical model on a burn-
ing gas inside a packed bed are presented. To focus on the reactions
in the gas phase, an inert packed bed is used. It is shown that a com-
bustion wave travels through the packed bed and in some cases, this
wave travels against the direction of the gas stream. It is also shown
that flashback is very unlikely to occur in municipal solid waste in-
cineration on a grate.

2
Gas phase

13



2.1 Introduction

2.1 Introduction

Experiments with a homogeneous fuel in a packed bed show a clearly the reaction
front. Experiments done with a less homogeneous fuel such as MSW show no clear
reaction front and the bed burns at different places [64]. There are some explanations
why waste ignites faster than predicted by models based on a homogeneous material.
Channeling inside the packed bed can be one of the reasons why the waste is igniting
faster (see for example the work of Yang et al. [97]). Due to easy igniting pieces of
waste a channel can be created when this piece is burned. In this channel the air re-
sistance is lower so even more oxygen is available and combustion inside the channel
is enhanced, increasing the channel even further (see figure 2.1). Another explanation
for the faster ignition rate is that highly flammable materials are inside the packed bed
which already release volatiles by the heat of the preheated primary air or heat from
the combustion zone. Under certain conditions these gases will be able to flashback
if they reach the reaction front.

1 2 3 4

Figure 2.1: Growth of a channel. [99]

The behaviour of the volatile phase in waste combustion is the subject of this chapter.
In practice, this phenomenon is a complex combination of (among others) pyrolysis,
gas combustion and heat and mass transfer between the solid and the gas phase. To
reduce this complexity the solid phase is regarded inert and the combustible gases
are fed through this inert packed bed. In this case the solid pyrolysis (which is the
source of the combustible gases) is not limiting the process. A model is presented to
predict the combustion process of the gas inside the packed bed. The variation in
flame temperature, solid temperature and flame velocity are investigated as a func-
tion gas mass flux, bed porosity and bed particle diameter. Experiments are carried
out to validate the model. With the gained knowledge, the possibility of flashback in
municipal waste combustion as described earlier in this section is investigated. But
first, in the next section, a literature review will be given on gas phase combustion in
an inert packed bed.

This chapter is an excerpt of the Msc. thesis written by Damink [28] which was carried
out within the framework of the present study. For more details, experimental results
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and an analytical model, the reader is referred to his work.

2.2 Literature review

2.2.1 Flashback of flames in porous media

In his dissertation Lammers [55] investigates the flashback of flames in porous burn-
ers. When the burning velocity of a free flame present above the burner is higher than
the unburnt gas velocity the flame will move to the burner. When it reaches the burner
the flame is cooled by the surface reducing its flame velocity resulting in a stabilized
flame. Thus a flame on the ceramic foam burner is cooled by the ceramic material
and so less NOx is produced making ceramic burners very interesting for industrial
applications.

Lammers showed that the stabilization of the flame is impossible for a range of un-
burnt gas velocities if the temperature of the environment (and the burner) becomes
too large and so heat accumulates in the ceramic foam. Inside the foam the flame
speed is increased significantly due to the increasing upstream effective heat conduc-
tion. It has to be mentioned that turbulence is not taken into account in his model
for the upstream combustion wave. This may result in under-predicted flame veloc-
ities. An industrial burner with ceramic foam will loose its heat to the environment
by radiation. When the flame can not get rid of its surplus of energy flashback will
occur. This flashback is defined as an unstable transition from surface combustion to
internal combustion. The most important factors for flashback are the temperature
of the environment, emissivity, porosity, heat transfer coefficient and the conductivity
of the material.

For his model some assumptions were made. First the temperature dependency of
the solid conductivity is expected not to be relevant because the radiative transport of
heat will be much larger than the conductivity. The dependency on the heat transfer
coefficient to the gas velocity was found to be relevant but not taken into account due
to the relative large uncertainty in the properties of the material used. So a fixed heat
transfer coefficient is used in the model and no Nusselt relations are used. For the
gas phase the skeletal mechanism of Smooke is used with constant Lewis numbers
and simple expressions for the other transport and thermodynamic properties. Some
conclusions from the dissertation:

• The risk at flashback is the highest at an equivalence ratio of unity;

• The criterion for flashback is highly sensitive to the heat transfer coefficient be-
tween the gas and the porous burner.
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2.2 Literature review

Besides focusing at the instant of flashback, one can also look at the processes occur-
ring after the flame has entered the porous medium. This is done in the next section.

2.2.2 Filtration combustion

Filtration combustion is defined by Babkin et al. [7] as the propagation of a gaseous
exothermic reaction in an inert porous medium.
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Figure 2.2: Profiles of a moving combustion wave in a tube filled with an inert packed bed. The
gas enters the tube at x = 0 and is ignited here. The figure shows that the combustion wave travels
along the gas stream. [103]

During filtration combustion experiments a combustible mixture is supplied to one
end of a tube containing an inert granular material. The mixture is either ignited at
the inlet or at the exit. With thermocouples at several locations along the tube the
temperature inside the packed bed is measured. While the ignited end heats up a
plane combustion wave appears. A typical result can be seen in figure 2.2. The figure
shows the thermocouple readings at several positions along the tube at several in-
stances. It can be seen that in this case, every 10cm a thermocouple is placed. From
this figure a combustion wave velocity can be derived by dividing the distance be-
tween two thermocouples by the difference in time for them to reach their maximum
temperatures. The measured velocities are constant over the entire length of the re-
action tube, except for an initial section of a few millimeters long. It depends on the
initial parameters if the combustion waves propagate either with or against the flow
or become standing waves. The thermo-physical and structural characteristics of the
porous medium, the reactivity of the combustible gas (rate and energy release of re-
action) and the flow velocity are all important parameters determining the velocity
of the filtration combustion wave. The pressure wave does not have a big effect on
the combustion characteristics and can be neglected, but thermal and concentration
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waves are of greatest interest. The process is characterized by a thermal wave velocity
and a combustion wave velocity. The thermal wave can be made visible by initially
preheating a narrow zone and filtering a gas without feeding fuel to the bed. Figure
2.3 shows a decaying thermal wave.
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Figure 2.3: Propagation of a thermal wave without fuel supply. A narrow zone of the packed bed
at x = 0 is preheated and a gas without fuel is filtered through the bed [103]

When the thermal wave and combustion wave overlap, the heat of reaction becomes
localized in a moving thermal wave. Figure 2.4 shows that in the first 0.2m the gas is
heated by the solid. This solid was already heated by the thermal wave initiated by
the flame in a previous time step. When the gas ignites it releases heat to the solid.
In this wave the temperature can be 2.8 times higher than the normal adiabatic flame
temperature of the mixture.
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Figure 2.4: The solid and gas temperature profile of a combustion wave. [23]
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2.2 Literature review

Several regimes of combustion are distinguished in the literature, see for example the
work of Babkin et al. [6]. The regimes are determined by the combustion front veloc-
ity. An overview of the regimes is given in table 2.1.

Table 2.1: Overview of the several regimes in filtration combustion. [6]

Regime Wave
velocity
[m/s]

Mechanism

Low velocities (LVR) 0−10−4 Solid heat conductivity, intensive
interphase heat exchange

High velocities (HVR) 0.1−10 Convective gas movement under
uniform pressure

Sound velocities (SVR) 100−300 Convective gas movement due to
gradient pressure in the
combustion wave

Low velocities detonation (LVD) 500−1000 Self-ignition under shock wave
interaction with carcass elements

Normal detonation (ND) 1500−2000 Detonation under heat and pulse
loss

The low velocity and the high velocity regimes are of interest in municipal waste com-
bustion. The other three regimes can be described as flashback. This phenomenon
will be dealt with later in this chapter.

Low velocity regime

Filtration combustion will occur in the low velocity regime if the particle diameters
are sufficiently small or the filtration velocity of the gas is sufficiently high or if the
mixture is outside the normal flammability limits (ultra lean or ultra rich). The low
velocity regime can be characterized by the intensive heat exchange between the gas
and the solid. In other words, the flame is attached to the solid phase as can be seen in
figure 2.4. In this regime filtration combustion can be superadiabatic when heat is cir-
culated from the hot-products to the cold incoming reactants by the solid phase. The
reactive gases are preheated before they react so they can reach a flame temperature
higher than the adiabatic flame temperature. Only when the combustion wave is co-
current with the filtration flow the gas gains more energy from the solid than it looses
to it. According to Zhdanok [103] this is the case for low (<0.5) and very high (>1.6)
fuel equivalence ratios. For intermediate equivalence ratios the combustion wave
can propagate counter-current to the gas flow. In this case subadiabatic combustion
takes place because the reactants loose heat to the relative cold solid phase. The heat
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circulation by the solid has a positive effect on the flame stability and flammability
and even very low exothermic mixtures can be burnt efficiently.

High velocity regime

For sufficiently large particle diameters, low filtration velocities of the gas and mix-
tures within the normal flammability limits a transition between the low and high
velocity regime occurs. During this abrupt transition the flame velocity increases by 3
to 4 orders of magnitude. In the reaction zone the thermal connection with the solid
phase is broken and the flame is comparable with a homogeneous flame because the
propagation is realized by the thermal conductivity of the gas instead of the solid.
These gas conductivity and diffusion terms are usually ignored in models for the low
velocity regime. In the high velocity regime also turbulence becomes important for
the total process. The characteristics of the HVR are an incomplete burn-up of the
fresh mixture and the turbulent non-uniform flame front. Experiments are not done
in open tubes but in closed vessels. An investigation of the the transition from the low
to the high velocity regime is given by Dobrego et al. [29].

In municipal waste combustion, combustible gases can be created under the solid ig-
nition front either by preheated primary air or by heat from the reaction front. Gas
composition measurements for both cases (see chapters 3 and 4) show that the con-
centration of the volatiles are well below the lower flammability limit for both cases.
Because only in the low velocity regime the gases are able to ignite outside the normal
flammability limits, this regime is the only relevant regime in municipal waste com-
bustion. Therefore, in this study modeling and experimental work have been carried
out in the low velocity regime.

2.3 Modeling

In modeling filtration combustion some assumptions and estimates have been made.
The following assumptions are often used [23, 36, 102, 7, 103]:

• The packed bed is modeled as a continuum.

• The flow speed is sufficiently low so that the pressure is assumed to be constant.
Achenbach [4] calculated a maximum pressure drop of 1600Pa showing that
this assumption is reasonable.

• The porosity of a packed bed filled with spheres is estimated to be 0.4. The
porosity depends on the packing of the bed and the shape of the particles.
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2.3 Modeling

• In all analytical models the combustion wave is assumed to move at a constant
speed. In experiments it was seen that except for the starting region this is valid.

• Almost all researchers assume the bed to have an uniform porosity and they
assume that there are no temperature gradients inside the particles (Bi << 1).
Using bigger particles in experiments results in larger discrepancies with mod-
eling results.

• The temperature is equals the ambient temperature on either side of the com-
bustion wave. This is valid when the reactor is long enough.

• The solid thermal conductivity is considered to be large relative to that of the
gas mixture.

• In models for the low velocity regime the diffusion and thermal conductivity of
the gas are neglected. This assumption is not valid for the high velocity regime.

• The energy exchange between the gas and the solid is assumed to be propor-
tional to the local temperature difference.

• The porous media is considered inert and does not participate in the reaction.

• In analytical models often a first order Arrhenius rate expression is used to de-
scribe the methane combustion. Most numerical models use the GRI database.

• No radial effects are considered. This is valid when Pe

Some discussions exist on the following assumption: the reaction front is assumed
to be small relative to the width of the preheated zone. In most analytical models
the gas temperature is considered to jump from T(0-) to T(0+) at the point where the
temperature of the solid is equal to the ignition temperature. The reaction term is
replaced by an energy release delta function dividing the system into a pre-reaction
and post-reaction zone. Bubnovich et al. [23] question the assumption of the reaction
front to be infinitely small. They derived an equation for this reaction front thickness
which describes the front of several millimeters seen during experiments well.

2.3.1 Modeling equations

The system which describes the energy and mass conservation is [23] (see also figure
2.5):
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∂(ρg Q)

∂x
= 0

ρg
∂Yi

∂t
=−ρg Q

ε

∂Yi

∂x
+Ki

ρg cp,g
∂Tg

∂t
= ∂

∂x

(
kg
∂Tg

∂x

)
− ρg Qcp,g

ε

∂Tg

∂x
− 1

εh As (Tg −Ts )−hw all (Tg −T0)−∆HC H4 KC H4

ρs cp,s
∂Ts

∂t
= ke f f

∂2Ts

∂x2 + 1
1−εh As (Tg −Ts )−hw all (Ts −T0)

(2.1)

In this system, ρg is the gas density, Q is the superficial filtration velocity, Y is the
species mass fraction, ε is the porosity of the packed bed, cp is the specific heat, T is
the temperature, k is the thermal conductivity, h is the heat transfer coefficient,∆H is
the heat of reaction and K is the reaction rate. The subscript g denotes the gas phase
and s denotes the solid phase. The first two equations are the mass conservation
equations. The third equation is the energy conservation equation for the gas phase
and the last equation is the energy equation of the solid phase (the packed bed).

Q
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�
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Figure 2.5: Scheme of the system
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2.3 Modeling

The diffusion of the gas species is small compared to the convection, so the diffusion
is neglected. The boundary and initial conditions are:

Tg = Tg ,0;
∂Ts

∂x
= 0; Yi = Yi ,0 at x = 0

∂Tg

∂x
= 0;

∂Ts

∂x
= 0;

∂Yi

∂x
= 0 at x = L

Tg = Ts = 293+1100e−
( x−0.5

0.05

)2

; Yi = Yi ,0 at t = 0

(2.2)

The initial condition for the two temperatures is a sharp peak with a maximum at
x=0.5m. These temperature peaks simulate ignition. When the simulated time is long,
the influence of the height of the initial peaks can be neglected. This assumption
holds in this case, because the times in the simulation are in the order of an hour.

Reaction kinetics

The overall reaction of ultra lean methane combustion will be approximated by a sin-
gle step Arrhenius equation:

KC H4 = ke−E/RTρg YC H4 (2.3)

For the ultra lean (0.1 ≤φ≤ 0.47) mixtures Futko [36] obtained the kinetic coefficients
based on numerical calculations with the GRI mechanism:

E ' 130k J/mol

k ' 2.0 ·108s−1 (2.4)

Variable parameters

The average superficial gas velocity by:

Q =
ṁ′′

g

ρg
with: ρg = p

MRTg
(2.5)

The specific heat of air (of which the mixture mainly consists) is calculated by [23]:

cp,g = 947e183·10−6Tg (2.6)

The specific heat of the solid, in this case alumina is calculated by using [23]:

cp,s = 29.6+2.61Ts −1.7110−3T 2
s +3.3810−7T 3

s (2.7)
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The Nusselt relation introduced by Wakao et al. [92] is used for the heat transfer coef-
ficient.

h = kg

dp

(
2+1.1Re0.6Pr 1/3) with: Re = Qdp

νg
(2.8)

The thermal conductivity of the gas is calculated with [24]:

kg = 4.82 ·10−7cp,g T 0.7
g (2.9)

The volumetric wall heat losses depend on the reactor type used. In the combustion
wave velocity experiments the tube is hot and energy is only lost by natural convec-
tion at the outside of the reactor. Based on an energy balance for a cylindrical control
volume of diameter dtube,i , the volumetric heat transfer coefficient for the heat trans-
fer from the bed to the wall can be derived:

hw all ,v = hw all
4

dr
(2.10)

in which hw all is the heat transfer coefficient and hw all ,v the volumetric heat trans-
fer coefficient from the solid bed to the surrounding environment. For a detailed
estimate of the heat transfer coefficient for the experiments the reader is referred
to the work of Damink [28]. He estimates a volumetric heat transfer coefficient of
444W /m3K .

The total effective solid thermal conductivity is expressed as:

ke f f = ks +kr (2.11)

The total effective solid thermal conductivity consists of a combination of the thermal
conductivity (ks ) and a radiation term (kr ). It is difficult to calculate the effective ther-
mal conductivity because the packing force and the packing arrangement needs to be
known because the thermal conductivity is very sensitive to these parameters. Hen-
neke [43] assumes the thermal conductivity of the packed bed to be 1% of the thermal
conductivity of pure alumina. Pure alumina has a conductivity of about 18W /mK so
this results in a conductivty of 0.18W /mK for the packed bed. Bubnovich [24] uses for
the same sized alumina spheres a thermal conductivity of 1.32W /mK and in another
paper [23] the following polynomial is used:

kal =−0.22+1.7 ·10−3Ts +8.22 ·10−8T 2
s (2.12)

This results in a conductivity range from about 0.6 to 1.8W /mK for the temperature
range of the experiments. This polynomial is used in the model.
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2.3 Modeling

Experiments showed that the steel reactor tube became very hot. Because of the high
conductivity of stainless steel of about 25W /mK at high temperatures the hot zone is
enlarged. Due to this high conductivity heat is moved upstream easier so the down-
stream velocity of the combustion wave decreases. To take the extra thermal con-
ductivity of the tube into account this conductivity is averaged over the surface. The
thermal conductivity of the stainless steel reactor is given by: ktube = 0.013Ts+11 [15].
The effective solid thermal conductivity including the conductivity of the reactor wall
is given by:

ks = (1−ε)kal Abed +ktube Atube

Abed + Atube

with: Abed = π

4
d 2

tube,i and Atube =
π

4

(
d 2

tube,o −d 2
tube,i

) (2.13)

The outer diameter of the tube dtube,o is 0.051m.

The radiation part is calculated by [25]:

kr = 4F dpσT 3
s (2.14)

In this relation, σ is the Stefan-Boltzmann constant and F is the radiation exchange
factor to be about 0.5 for a packed bed with a porosity of 0.4 and an emissivity of 0.45
for the alumina spheres. For high temperatures the radiation is dominating the heat
transfer inside the bed so kr >> ks for high temperatures.

Fixed parameters

The used fixed parameters and reaction kinetics for the model are summarized in
table 2.2.

Table 2.2: The parameters used in the model.

variable value ref. variable value ref.
As π/dp = 698m−1 [43] p 101 kPa
D 45mm Pr 0.7 [14]
dp 4.5mm ρs 3690 kg /m3

E 130k J/mol [36] σ 5.669 ·10−8 W /m2K 4 [14]
F 0.5 [25] ε 0.4 [4]
k 2.0 ·108s−1 [36] dtube,i 45mm
dtube,o 51mm
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2.3.2 Solution method

To solve the set of equations (2.1) the multi-physics partial differential equation solver
FlexPDE is used which is based on finite elements. Each run at a specified equivalence
ratio and mass flux results in a number of temperature profiles at different time steps.
The peak solid temperature and the combustion wave velocity can be extracted from
the data. Due to some instabilities in the solution for the peak gas temperature, the
combustion wave velocity is derived from the locations where the gas temperature
is 800K . This can be done as figure 2.6 shows that the temperature profile before
combustion zone (left part of the wave) does not change. In the zoomed plot it is
clearly visible that first the gas is heated by the solid (the preheat region) followed by a
region were the solid is heated by the gas to the point the peak temperature is reached
(the reaction region). In figure 2.7 the mass fraction of C H4 in the combustion wave
is plotted. As can be seen the reaction front in this case is about 30mm wide.
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Figure 2.6: The predicted gas and solid temperatures at t=1991s and t=3991s. The mass flux is
0.55kg /m2s and φ= 0.15.

2.3.3 Results

Gas mass flux

Figure 2.8 shows the peak solid temperature (left) and combustion wave velocity
(right) as a function of the equivalence ratio for different gas mass fluxes. The left
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2.3 Modeling
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Figure 2.7: The mass fraction of CH4 at t=1991s for a mass flux of 0.55kg /m2s and φ= 0.15.

figure shows that the peak solid temperature increases with increasing equivalence
ratio. This is an expected result because more fuel is added to the system with an
increasing equivalence ratio. Increasing the gas flow rate also leads to an increasing
peak solid temperature. Also this can be attributed to the addition of more fuel by
increasing the mass flow of the incoming gas stream. The increasing temperatures
show that the increased cooling of the higher gas velocity is more than compensated
by the increasing amount of available chemical energy.
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Figure 2.8: The predicted peak solid temperature (left) and combustion wave velocity (right) as
a function of equivalence ratio for different gas mass fluxes.
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At the same time, the combustion wave velocity decreases with increasing equiva-
lence ratio. This is an expected result because the flame contains more energy to
travel against the gas stream. Despite this, still not enough energy is put in the flame
to make it travel upstream. For an increasing gas mass flux, the combustion wave
velocity increases as well. Despite the higher energy content of the flame it is blown
further downstream by the increasing gas flows.

Particle diameter

The influence of the particle diameter can be seen in the plots in figure 2.9. The left
plot shows the peak solid temperature for two particle sizes and the right plot shows
the combustion wave velocity for these particle sizes. The only model parameter that
changes with particle size is the convective heat transport (through both the Reynolds
and the Nusselt numbers). The temperature plots show that increasing convective
cooling is more pronounced for the smaller particles due to an increased heat transfer
coefficient for these particles.
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Figure 2.9: The predicted peak solid temperature and combustion wave velocity for different
particle diameters. (ṁ′′

g = 0.65kg /m2s)

Despite the differences in convection for the different particle sizes, the combustion
wave velocities hardly differ. This shows that the particle size (and thus the convective
heat transfer) does not have a significant effect on the combustion wave velocity.

Zhang [102] validated his model with experiments done with different particle diam-
eters and showed that the discrepancies with modeling results become bigger when
the particle diameter is increased. This is caused by the fact that the model does not
take into account temperature gradients inside the particles.
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2.3 Modeling

Adding nitrogen

When increasing the mass flux of the fuel/air mixture more energy is added to the sys-
tem increasing the temperature. By adding nitrogen the mass flux can be increased
without increasing the energy content of the mixture. Addition of nitrogen in an open
flame will cool the flame since more gas needs to be heated with the same amount of
energy. Adding nitrogen in the case of filtration combustion can be compared with
a higher mass flux at a lower equivalence ratio since the methane mass fraction de-
creases. The left part of figure 2.10 shows that adding nitrogen does not have the same
effect as adding nitrogen to open flames and even increases the peak flame temper-
ature. Despite the higher temperature for an increasing nitrogen flow, the right plot
shows that the velocity also increases.

The results for adding nitrogen can be compared to the results presented in figure 2.8.
Also there, higher temperature are obtained when the equivalence ratio is decreased
at an increasing mass flow.
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Figure 2.10: The predicted peak solid temperature and combustion wave velocity for a case with
and without extra nitrogen added. (ṁ′′

g = 0.35kg /m2s)

Porosity of the bed

The effect of porosity of the packed bed can be seen in figure 2.11. The left plot shows
that the peak solid temperature is only influenced slightly. However, the right plot
shows that a small porosity results in a lower wave velocity. This is caused by the
increased velocity of the thermal wave since less solid needs to be heated.
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Figure 2.11: The predicted peak solid temperature and combustion wave velocity for different
packed bed porosities. (ṁ′′

g = 0.55kg /m2s)

2.4 Experiments

2.4.1 Experimental setup

Figure 2.12 shows the experimental setup used for the experiments. Air, methane and
nitrogen are fed from below into the premix section (2). The mass flux of the different
gases are controlled by orifices which are calibrated with a wet gas flow meter. To pre-
vent flashback in the supply tubes special safety valves are used. The premix section is
filled with steel wool to improve mixing and prevent explosions. A highly porous plate
(3) is used to carry the bed and prevent flame flashback from the ignition zone to the
premix zone. In the ignition zone the gas is ignited by a heating coil wrapped around
a small alumina tube (4). The packed bed (5) consists of alpha-alumina spheres of
about 4.5mm in diameter. α-Alumina (Al2O3) is used, because of its high melting
point of 2300K , its relative low thermal conductivity,its low porosity and it is inert.
The temperature in the bed is measured with K-type thermocouples. To reduce the
wall heat losses the reactor is isolated with glass wool.

The reactor is made of stainless steel because of economical reasons and ease of man-
ufacturing. Stainless steel is not the most convenient material for these experiments
because of its relative low melting point of about 1700K and relative high thermal
conductivity. More favorable materials to use are quartz glass or alumina but these
materials are far more expensive and less convenient to manufacture. Since the ma-
terial choice of the reactor limits the temperatures that can be reached also relative
inexpensive K-type thermocouples can be used. Due to the temperature limit only
runs with low mass fluxes and low equivalence ratios can be done without causing
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Figure 2.12: A schematic overview of the experimental setup. 1-gas inlet; 2-premix section; 3-
porous plate; 4-heating coil; 5-packed bed. The thermocouples are labeled TC5-TC12.

damage to the experimental setup. The inner diameter of the tube is 4.5cm which is
10 times the particle diameter often used as a rule of thumb to neglect wall effects.

2.4.2 Procedure

The experiments are started by preheating the bed with the heating coil for about half
an hour with a small mass flow of air. Then some methane is added to increase the
heating rate of the bed. When sufficiently high temperatures are reached the mass
flow of the air and the fuel are increased step by step. When the front starts to move
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the power to the heating coil is turned off to prevent damage to the heating coil and
partially burning of the mixture before they reach the combustion front.

2.4.3 Thermal wave

To get some insight in the thermal properties of the packed bed two runs are done to
show the thermal wave. To start the experiment the bed is heated until thermocou-
ple seven (TC7) reaches a temperature of 1073K . Then the methane valve is closed
to stop the reaction. Now only air is blown through the reactor at a chosen mass flux
which causes the thermal wave to move downstream. Figure 2.13 shows the thermal
wave at an air mass flux of 0.174kg /m2s. The left part of the figure shows the mea-
sured temperature versus time at different locations. When the shape of the wave
does not change it is possible to extract the thermal wave velocity from such a plot by
dividing the distance between the thermocouples by the time needed for the peak to
reach the following thermocouple. However, due to the conductivity of the bed and
the heat losses at the wall the thermal wave becomes less high and stretched out as
can be seen in the right part of the figure where the temperatures are plotted against
the position for different time steps. Because of this the maximum temperature mea-
sured at a thermocouple does not have to be the peak of the thermal wave. To extract
the peak of thermal wave from the data the maximum temperature measured at the
thermocouple has to be found while this temperature is larger than the temperature
measured at the two thermocouples next to it. The thermal waves at the correspond-
ing times are shown in the right part of the figure. From this figure the thermal wave
velocity is derived by dividing the distance between the thermocouples by the time
for the peak of the thermal wave to reach the next thermocouple.

2.4.4 Combustion wave

Figure 2.14 shows the measured data of a run with a mass flux of 0.45kg /m2s and an
equivalence ratio of 0.3. As can be seen in the figure the combustion wave becomes
steady after thermocouple 10. Thermocouple 12 shows lower temperatures because
this thermocouple is placed about 1cm under the top of the bed in a part of the reactor
which is not isolated. The combustion wave velocity can be derived from the figure by
dividing the distance between thermocouple 10 and 11 by the time needed to reach
its maximum. Since the temperatures are plotted against the time the preheat regions
are located at the right part of the waves.
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Figure 2.13: The thermocouple readings as a function of time (left) and location (right) at an air
mass flux of 0.174kg /m2s
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Figure 2.14: The combustion wave ṁ′′
g = 0.45kg /m2s and φ= 0.3

2.4.5 Remarks on the experiments

As discussed in the previous paragraph it takes a long time for the combustion wave
to become stationary and so only a stationary combustion wave velocity can be de-
rived between thermocouples 10 and 11. To improve the experimental setup a longer
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reactor made from quartz glass or alumina has to be used.

Figure 2.14 shows that the temperatures in the lower part of the reactor remain rather
high at a temperature of about 650K when the combustion wave already reaches ther-
mocouples 10 and 11. It has to be mentioned that the heating coil is already turned
off. When the methane supply is shut of, an instant drop in temperature is measured
at thermocouple 7 just above the heating coil. The high temperatures can only be
caused if energy is added to the lower part of the bed. An explanation may be the
partly oxidation of the fresh mixture around the heating coil. Probably enough en-
ergy is released by the partial oxidation to keep the heating coil or a hot particle hot
enough to maintain the oxidation. The effect can possibly be eliminated by shortly
closing the methane valve to cool the lower part of the reactor. However it is rather
hard to monitor the behaviour during the experiments. Measuring the C H4,O2 or
CO2 concentrations in the exhaust gases and/or by placing more thermocouples in
the igniter zone would be useful to monitor the combustion process more accurately.

Despite these shortcomings in the experimental setup the trends found in the exper-
iments are useful to validate the model.

2.4.6 Results and validation of the model

Figure 2.15 shows the predicted and measured peak temperatures and combustion
wave velocities. The temperatures are measured at thermocouples 10 and 11 and
the waves are derived between thermocouples 9 and 10 thermocouples 10 and 11.
The model slightly over-predicts the peak solid temperature. Despite the small over-
prediction, the influences of equivalence ratio, mass flux and addition of nitrogen are
predicted reasonably well. The lower measured temperatures can be caused by the
possible partial oxidation of the methane at the heating coil as described earlier.

The combustion wave velocities are also over-predicted, but also here the trends are
predicted well. The slower wave velocities could be attributed to the wall effects.
These are taken into account in the model as a volumetric heat loss, but the actual
superficial heat loss might have a bigger impact than predicted by a volumetric heat
loss. Also the heat generated around the heating coil can be a cause for the combus-
tion wave to be able to slow down (i.e. it has the tendency to travel upstream).

2.4.7 Conclusions on the experiments and validation

Despite the low amount of experiments the trends predicted by the model can be
validated. Also the peak temperatures are predicted well by the model. It is clear that
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2.5 Application to municipal waste incineration
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Figure 2.15: The predicted and measured peak solid temperatures and combustion wave veloc-
ities. The temperatures are measured at thermocouples 10 and 11 and the waves are derived
between thermocouples 9 and 10 thermocouples 10 and 11.

the effect predicted by the models for increased equivalence ratios, mass fluxes and
adding nitrogen are noticeable during the experiments.

2.5 Application to municipal waste incineration

As has been said in the introduction of this chapter, flammable gas concentrations
under the ignition front are generally below the flammability limit. Therefore only
the low velocity regime is interesting for waste combustion. It has been shown in
the literature review that for these ultra low equivalence ratios in this low velocity
regime the combustion wave travels along the gas stream. So despite the increased
flammability of the mixture flashback does not occur.

However, because of the highly inhomogeneous composition of the waste, once in
a while a situation could occur at which the conditions for the high velocity regime
are fulfilled. In this regime, the gases should be at least at their lower flammability
limit. In this regime the coupling between the gas and solid phase is broken, so the
heat from the reaction front does not result in volatiles in this case. The heat from
devolatilization can only come from the preheated primary air. In an extreme case, a
batch of a highly flammable liquid such as methanol or octane is at the grate. It can
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be estimated whether enough liquid can be evaporated by the preheated primary air
to reach their LFL. The heat available in the air to evaporate is:

q̇ ′′
ai r = cp,ai r ṁ′′

ai r (Tpr eheat −Tsat ) (2.15)

The heat needed to evaporate enough liquid to reach its LFL is:

q̇ ′′
evap = M f uel

Mai r
LF Lṁ′′

ai r Hevap (2.16)

The data for octane and methanol is listed in table 2.3. The table shows that there
is not enough energy available in the preheated primary air to evaporate enough
methanol or octane to create a flammable mixture. When it is not possible to create
a flammable mixture with highly flammable liquids it is almost impossible to create
such a mixture from a solid by pyrolysis. It can be concluded that flashback in MSW
combustion is very unlikely to take place. This indicates that the upstream ignition
front movement seen in for example wood combustion is mainly driven by the solid
phase. This possibility will be treated more thoroughly in chapter 3.

Table 2.3: Heat needed to evaporate a liquid to its LFL and the heat available for evaporation in
the preheated primary air.

fuel LFL [-] Hevap

[k J/kg ]
M f uel

[kg /mol ]
Tsat

[oC ]
q̇ ′′

evap

[k J/m2s]

q̇ ′′
a

[k J/m2s]

octane 0.95 ·10−2 300 114 126 10 6
methanol 6.7 ·10−2 1100 32 65 72 32

2.6 Conclusions

• The model shows that the combustion front velocity is the same for 4.5mm and
9mm particles.

• The model shows that adding nitrogen to the gas mixture, the solid temperature
increases. The combustion wave velocity increases as well.

• Experiments are carried out the validate the model. The model under-predicts
both the solid temperature and the combustion wave velocity. The trends are
well predicted.
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2.6 Conclusions

• Due to the high primary air velocities common for the incineration of MSW the
combustion wave will probably move downstream relative to the reaction front
and does not have much effect on the reaction front going upstream.

• Flashback of a flame into cold unburned waste is unlikely to occur since the
mixture must have an equivalence ratio around one. This is unlikely to achieve
with preheated primary air and even impossible with the heat from the com-
bustion zone.
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This chapter investigates the mechanisms causing the ignition prop-
agating in horizontal and vertical direction through a waste bed. The
horizontal front propagation determines the flame stability in the fur-
nace and the vertical front propagation determines the burnout of
the fuel. Optical lab scale experiments are carried out to look inside
a burning wood bed. Besides, a model is developed to predict the ve-
locity and temperature of the ignition front in horizontal and vertical
direction. The model is solved analytically and validated with experi-
mental data from the literature. From the model an upper and a lower
boundary for the ignition front temperature and velocity are derived.
It is found that for both the vertical and the horizontal front propaga-
tion the char combustion is the driving mechanism for low radiative
heat fluxes from the furnace. This implies that the volatile combus-
tion can be neglected, which simplifies the modeling of the ignition
front propagation significantly. In full scale plants, the radiation from
the furnace walls can not be neglected.

3
Two dimensional front spread
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3.1 Introduction

3.1 Introduction

Combustion on a grate is common practice for the incineration of municipal solid
waste. This grate technology is also used for energy production from biomass. To
control such plants, physicochemical knowledge of the combustion process taking
place on the grate is essential. Despite the robustness of the grate technology, the fire
on the fuel bed may travel back and forth in the furnace. This may result in incom-
plete burnout or chute fire. In both these situations the ignition of the fuel is a key
mechanism: poor burnout may occur with a fuel that is hard to ignite and chute fire
may occur with a fast ignitable fuel. To control the combustion process and emis-
sions, it is essential to stabilize the flame on the fuel layer and determine the ignition
and combustion speeds through the fuel layer. The propagation of the ignition front
is the subject of the current work.

In this work a two dimensional ignition front propagation through a packed bed of
wood is investigated. Because waste is a highly inhomogeneous fuel, wood is used as
a model fuel. Many models on the combustion of a solid fuel on a grate assume an
ignition front which is initiated by the radiation of the furnace and the flames above
the bed. After its initiation the front is assumed to travel downwards, see for example
[39, 88, 91, 26, 31, 98]. This process is depicted in figure 3.1. In this model, only a thin
one dimensional slice of the fuel layer is followed in time. The location of the front
is correlated with time by the horizontal velocity of the fuel layer. This approach is
only justified if the horizontal mass and energy gradients are small compared to the
vertical gradients. Despite the wide use of this approach, the authors only found Van
der Lans et al. [88] actually validating it for straw combustion.

It will be shown in this chapter that the one dimensional approach can not be applied
to describe the combustion of a two dimensional fuel bed. In this work it is both
experimentally and analytically investigated how a two dimensional ignition front
evolves in time. As a first step the mechanisms in one dimensional front propagation
are investigated. To investigate a two dimensional front propagation, optical exper-
iments are carried out in a thin glass vessel. With the knowledge derived from the
experiments, a model is developed to describe the front velocity in both the vertical
and horizontal direction. The model is validated with experimental results from the
literature. Finally, the experimental results obtained in lab scale setups are evaluated
and translated to a full-scale incinerator.
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fuel layer
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transport
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Figure 3.1: Top: current model on ignition front movement through a packed bed. Instead of
looking at the whole bed, only a one dimensional column is followed. Bottom: when the gradi-
ents in horizontal direction can not be neglected, a curved ignition front will result.

3.2 Existence of two dimensional ignition fronts

The assumption whether the horizontal heat gradient can be neglected with respect
to the vertical gradient can be verified with the Péclet number. This number gives the
ratio of the convective heat transport due to the bed movement and the diffusive heat
transport due to conduction and radiation inside the bed:

Pe = vLρcp

ke f f
= vL

αe f f
(3.1)

In this equation v is the horizontal velocity of the fuel bed, L is a characteristic length
and αe f f = ke f f /(ρcp ) is the effective thermal diffusion coefficient of the bed. When
Pe >> 1, the horizontal gradients can be neglected. The velocity of the fuel bed is
determined by the grate movement and the feed rate. For waste combustion this ve-
locity is around 8.4cm/mi n. This figure is generally higher for biomass combustion.
For the characteristic length L the thickness of the thermal front seems an appropri-
ate choice, because this is the length over which the thermal diffusion takes place.
Experiments carried out by Ryu et al. [75] on 5−30mm pine particles show that this
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3.3 One dimensional ignition front propagation

thermal front thickness is in the order of the particle size. The effective thermal con-
ductivity ke f f is a combination of conduction and radiation. For high temperatures
it can be shown that the conduction can be neglected compared to radiation:

ke f f ,r ad

ke f f ,cond
=

4σF d f T 3
f ,av g

kcond (1−ε)
≈ 160 (3.2)

The radiation is described using an effective radiative conductivity ke f f ,r ad [25]. In
this equation σ is the Stefan-Boltzmann constant. The radiation exchange factor F is

about unity [25]. The average combustion zone temperature T f ,av g = 3
√

15004−3004

4(1500−300) =
1017K [79], the front thickness d f ≈ 3·10−2m (an estimate for waste combustion), the
thermal conductivity of the solid fuel k ≈ 0.15W /mK (wood) and the porosity of the
fuel bed ε ≈ 0.7. For this process, the conduction is small compared to the radiation
and can be neglected. This is also found by Shin and Choi [78].

With the numbers found, the Péclet number becomes (with cp = 1.9k J/kg K [68]):

Pe = vbd f

αe f f ,r ad
≈ 2 (3.3)

The Péclet number is around 2, which shows that the horizontal heat gradient inside
the bed can not be neglected. In fact, it seems to play an important role in the hori-
zontal front propagation. This suggests that a two dimensional approach is needed.

Van der Lans et al. [88] found that the Péclet number is in the order of 104 for straw
combustion. In contrary to our analysis, they use the length of the grate as the charac-
teristic length. Besides, they assume conduction the main heat transport mechanism.
These two differences result in a higher Péclet number than the one found in equation
3.3.

When the two dimensions of the front propagation are translated to relevant prop-
erties of the combustion process it can be said that the horizontal front propagation
defines the location of the fire. The vertical front propagation determines the com-
bustion rate and the burnout of the waste layer.

3.3 One dimensional ignition front propagation

As a first step, the one dimensional, vertical front propagation is considered. The heat
needed to drive the ignition front downwards can be delivered by either the flames
from volatile combustion or the combustion of the remaining char above the front.
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To investigate the heat source responsible for the downward front propagation an an-
alytical as well as an experimental approach has been applied. Firstly, optical exper-
iments are carried out to observe the location of the volatile combustion. Secondly,
gas composition measurements from Gort [39] inside the ignition front are evaluated
to determine the location of the volatile combustion. Finally, the influence of the
volatile content of the fuel on the ignition propagation is investigated with the help
of measurements from Gort [39]. The findings from the experiments will be comple-
mented by a flame speed analysis applied on a packed bed to see in which occasions
the flame is able to burn inside the fuel bed.

3.3.1 Optical experiments

Optical experiments are carried out in a quartz glass tube to observe where the ho-
mogeneous combustion takes place. The tube is filled with wood pellets of about
5mm diameter and 10mm length. Two video cameras used to monitor the combus-
tion process. One camera makes OH∗ radicals visible with an UG11 filter. During
the experiments different amplification levels are used for this camera, so the images
from this camera can not be compared. The second camera is an ordinary camera
which pictures will be used as a reference. Pictures are taken with the two cameras
at the same time. The results for different air velocities can be seen in figures 3.2-3.5.
Note that the picture and the OH∗ image are not at the same scale.

Figure 3.2: Picture of the front (left) and OH∗ spectroscopy (right) at an air velocity of 0.052m/s.
The OH∗ spectroscopy shows a lot of noise because of the high amplification which was needed
to show the very small amount of OH∗ radicals.

Figure 3.2 shows the front and the locations of OH∗ radicals for an air velocity of
0.052m/s. It can be seen that there are almost no OH∗ radicals in the tube. The pic-
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3.3 One dimensional ignition front propagation

ture also shows hardly any flames. From this figure it can be concluded that glowing
combustion does not produce OH∗ radicals.

Figure 3.3: Picture of the front (left) and OH∗ spectroscopy (right) at an air velocity of 0.10m/s.
The OH∗ spectroscopy shows a lot of noise because of the high amplification which was needed
to show the very small amount of OH∗ radicals.

When the air velocity is increased to 0.10m/s some more flames (and OH∗ radicals)
are visible. This is shown in figure 3.3. Some flames are visible but not enough oxygen
is available to burn all gases. Condensed tars have been found on the inside of the
tube during and after the experiment.

Figure 3.4: Picture of the front (left) and OH∗ spectroscopy (right) at an air velocity of 0.28m/s.
A relatively broad glowing front can be seen in the picture.
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When the air velocity is increased to 0.28m/s flames can clearly be distinguished (fig-
ure 3.4). When some more attention is paid to the images one can see that where
the bed is glowing, no OH∗ radicals are present. A conclusion can be that the flaming
combustion takes place above the bed. Also the produced hydrogen, which has a high
combustion velocity, seems to burn above the fuel bed. Due to the large heat losses
to and through the wall the front is not straight but has a convex shape (the center of
the tube burns faster). The pellets close to the wall can hide the flame. On the other
hand, the glowing combustion inside the bed can be seen clearly in the pictures. An
indication is given that the flaming combustion takes place above the bed (or at least
not under the glowing front).

Figure 3.5: Picture of the front (left) and OH∗ spectroscopy (right) at an air velocity of 0.34 m/s

Figure 3.5 shows the images of the experiment carried out with an air velocity of
0.34m/s. It can be seen from the picture that the flame is not as intense as is was
in the previous experiment. When this picture is compared to the picture taken at an
air speed of 0.28m/s it can be noted that the latter shows a bigger glowing front. The
higher air velocity causes the combustion to cool down. When the velocity is even
further increased the front will be cooled too much and extinguishes.

These optical experiments indicate that there is hardly any volatile combustion for
low air velocities. For higher air velocities the volatile combustion is clearly present,
but it seems to occur mainly above the fuel bed.

3.3.2 Gas composition measurements

Gort [39] measured temperatures and gas compositions inside a burning packed bed.
The used setup consists of a steel tube with a diameter of 300mm and a length of
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3.3 One dimensional ignition front propagation

800mm. The fuel bed is ignited from the top with an electric radiant heater and pri-
mary air is fed through the fuel bed from below. Gort used wooden cubes of 30mm
and air velocities of 0.05, 0.25 and 0.5m/s. The gas extraction point is at a fixed loca-
tion inside the fuel bed so the gas extraction point sees the front passing in time. Fig-
ure 3.6 shows the measured composition of the extracted gases as a function of time
for three air flow velocities (0.05, 0.25 and 0.5m/s). The figures also show the calcu-
lated oxygen balance of the flue gases. This oxygen balance is defined as the amount
of oxygen depleted from the incoming air minus the oxygen found in the product
gases CO and CO2. Note that the oxygen present in the H2O is not considered. Just
below the ignition front at 0.05m/s the amount of oxygen in the product gases CO and
CO2 is higher than the oxygen which is depleted from the air supply. This indicates
that oxygen from the wood is used to create CO and CO2 under the front which can
only happen when volatiles are burned under the front. When volatiles are burning
under the front, the front will be speed up due to the effective transportation of heat.

The positive oxygen balance (more oxygen is depleted than is found in the CO and
CO2) is probably caused by the fact that the water and hydrocarbon concentrations
are not considered. The hydrocarbons and water can contain a significant amount of
oxygen.

Initially at 0.25 and 0.5m/s as much oxygen is depleted from the air as is found in
the CO and CO2. This may indicate that for these air velocities only char combustion
takes place under the front, because this produces no H2O. These observations lead
to the conclusion that at low air velocities volatiles burn under the ignition front. This
conclusion is in line with the first conclusion of Katalambula et al [52]. They measure
the ignition mode (flaming or glowing) of a coal particle for several air velocities. They
find that only under negligible and free convection the ignition is flaming.

3.3.3 Ignition with varying volatile content

To study the influence of volatile content on the ignition front in a packed bed, Gort
carried out experiments [39]. He pyrolized wooden cubes of 30mm under nitrogen at
a temperature of 300oC for a certain time before burning them in a packed bed. The
properties of the partly pyrolized cubes are listed in table 3.1.

ignition rate

Results from the experiments carried out by Gort are plotted in figure 3.7. He shows
measured results for the ignition rate which is defined as the mass of the fuel that is
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Figure 3.6: Measured gas compositions and an oxygen balance inside a packed bed of wood cubes
as a function of time for three air velocities.
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3.3 One dimensional ignition front propagation

Table 3.1: Data from the dry and pyrolyzed wood [39]. a The bed density can be calculated from
the properties of the bed and the wood given in [39]. Assumed is that the volume of the wood
particles in not changed during the pyrolysis. b The ignition speed is the ignition rate divided by
the bed density. Note that the unit is millimeters per second

untreated dry 15 min. 25 min. 35 min.
at 100oC at 300oC at 300oC at 300oC

% volatiles (d.b.) 82.6 82.6 81.1 75.5 53.5
% moisture (as received) 10.4 2.5 5.0 0.9 0.0
ignition rate [kg /m2s] 0.078 0.125 0.122 0.113 0.0790
particle density [kg /m3] 615 565.2 569.5 508.2 356.9
bed density [kg /m3] a 200 183.7 185.1 165.2 116.0
ignition speed [mm/s] b 0.390 0.681 0.659 0.684 0.681

ignited per second (in kg /m2s). The figure show that the ignition rate decreases with
decreasing volatile content.

ignition speed

The speed of the ignition front (in mm/s) is calculated with the data from table 3.1.
This is done by dividing the ignition rate from the experiments by the initial density of
the packed fuel bed. This ignition front speed is also plotted in figure 3.7. The values
of the untreated wood are omitted from the figure because the relatively high water
content influences the results too much. It can be seen in the figure that the ignition
front speed is independent of the volatile content. This shows that the ignition front
propagation is driven by heat transfer and not by chemical properties.

3.3.4 Flame speed in a packed bed

The flame speed in a packed bed can be calculated with a relation given by Williams
[95]. Although this relation is valid for the flame speed of a one dimensional adiabatic
open gas flame, it can be applied to a flame inside a packed bed.

ρg v f l = ṁ′′′
g d f l (3.4)

The flame speed is v f l , the volumetric gas combustion rate is ṁ′′′
g (in kg /m3s) and

d f l is the flame thickness (the zone at which the combustion reaction takes place). It
can be shown that the volumetric gas combustion rate can be rewritten as follows:

ṁ′′′
g =

ṁ′′
g

εd f l
(3.5)
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Figure 3.7: The influence of pyrolysis time (at 300oC ) on the ignition rate (black line) and ig-
nition speed (grey line). The ignition rate is taken from [39] (30mm cubes of wood, air velocity
equals 0.1m/s)

In which ṁ′′
g is the gas combustion rate per square meter, which is a more convenient

parameter in our case and ε is the porosity. With equations (3.4) and (3.5) the flame
speed can be expressed as:

v f l =
1

ρg

ṁ′′
g

ε
= 0.064m/s (3.6)

In which ρg = 1.2kg /m3 (air at STP) and ε = 0.7 are used. The value for the
gas combustion rate ṁ′′

g is approximated from the experimental results from Gort
[39]. He measures a maximum combustion rate for packed 30mm wood cubed of
0.078kg /m2s. With a volatile content of 82.6%, the gas combustion rate will be maxi-
mum 0.064kg /m2s.

When the interstitial primary air velocity is higher than the calculated flame speed
of 0.064m/s (eq. (3.6)), the volatile-oxygen mixture is blown away and will not burn
under the ignition front. It has to be noted that the analysis holds for an adiabatic
situation. In the glowing char layer, energy is added to the volatile-oxygen mixture
and the flame speed will increase. Hence it might be possible that the volatiles burn
in the glowing char layer.

The calculated flame speed in equation (3.6) is valid for an adiabatic situation. But
when the gas is flowing through a hot packed bed, energy is added to the gas. This
results in a higher flame speed depending on the supplied energy. It has been shown
in figure 3.11(b) that the gas phase burns inside the alumina layer, despite the high
superficial velocity of 0.3m/s. This shows that the flame speed calculated in equation
(3.6) is not applicable to a gas flowing through a hot packed bed. However, an impor-
tant conclusion of this analysis is that for velocities higher than 0.064m/s the gas can
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3.4 Two dimensional ignition front propagation

not burn under the glowing char layer. This finding is in agreement with the findings
from the gas measurements inside the combustion zone described in section 3.3.2.

3.3.5 Evaluation

For the vertical front propagation two sources of heat can be distinguished: (1)
volatile combustion and (2) remaining char combustion. From different analyses it
is found that only for low primary air velocities the volatiles can burn under the igni-
tion front. For higher air velocities, the volatiles burn above the ignition front. When
the volatiles burn above the ignition front, the heat transfer (either conduction of ra-
diation) from volatile combustion to the fresh fuel will be minimal. The remaining
source of heat is the char combustion. Equation (3.2) shows that the radiation is the
prominent heat transfer mechanism inside a packed bed for high temperatures. It
can be concluded that the vertical ignition front movement is dominated by the radi-
ation from the char combustion. This implies that for ignition modeling the volatile
combustion can be neglected completely, which simplifies modeling significantly.

3.4 Two dimensional ignition front propagation

The one dimensional approach will now be extended to a two dimensional approach.
To investigate the ignition front propagation in two dimensions, optical experiments
have been carried out in a two dimensional fuel bed.

3.4.1 Experimental procedure

A picture of the setup is shown in figure 3.8. The setup consists of a vessel of 17.5cm
wide, 1.5cm deep and the height is about 40cm. Air can be fed to the vessel from the
bottom. To ensure a uniform flow over the width of the vessel, the air is fed through
a porous plate. The backside and the upper part of the front-side of the vessel are
insulated to minimize heat losses to the surroundings. Without the front-side insula-
tion, the ignition front shrinks after the initial ignition and it even extinguishes after a
while. The vessel is filled either with wood pellets or wood chips till a certain height.
To ignite the wood, a layer of charcoal soaked in propanol is put on the right half of
the fuel bed and lit. The experiments are recorded with a camera.

Several experiments are carried out to see the shape of the ignition front and its prop-
agation mechanism in the two directions. The influences of both heat losses and
volatile combustion are regarded. All experiments are carried out with an air velocity
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Figure 3.8: Picture of the experimental setup to observe two dimensional ignition phenomena in
a packed bed.

of 0.3m/s. A typical result of an experiment can be seen in figure 3.9. Four images at
equally spaced times are shown.

Figure 3.9: Four pictures of the experiment with pellets. Together with the backside, the front-
side is insulated as well. To take a picture, the front-side insulation is removed for a few seconds.
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3.4 Two dimensional ignition front propagation

3.4.2 Results and discussion

Base case

The base case is an experiment with wood pellets. The top of the fuel bed is at the
same height as the lower side of the insulation on the front-side, so only the gas phase
above the bed is insulated. In figure 3.10 four images of the experiment are combined
in one picture. The location of the ignition front at four equally spaced times can be
seen and are highlighted by the black lines. The experiment lasts for about 45 min-
utes. The front can be divided in two parts: the right side of the front which is fairly
horizontal and the left side which is almost straight and at an angle of about 45o . The
horizontal part of the front expands towards the left. The vertical velocity of the front
is 0.40cm/mi n and the horizontal velocity is 0.38cm/mi n. Because these velocities
are almost equal, this could indicate that the propagation mechanism for both (or all)
directions is the same. However, with an equal front propagation mechanism in all
directions a circle shaped front would be expected, which is not the case in the ex-
periments. During the experiment wood particles from the top of the bed roll down
along the inclined part of the front and are burned on the horizontal part of the front.
This prevents the front from being too curved. It can be seen that where the inclined
and the horizontal parts meet, the combustion is more intense than at other places.
It is believed that this is caused by the combustion of the particles which rolled down.

1

2

3
4

Figure 3.10: Four pictures of the base case experiment combined in one image.
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Inert layer on top

To prevent interaction between the gas phase combustion and the fuel bed an inert
layer of small alumina spheres is put on top of the bed after ignition. Again four pic-
tures of the experiment are combined in one image (figure 3.11(a)). Besides the video
camera recording the experiment, another camera monitors the location of the OH∗
radicals with an UG11 filter, these radicals are an intermediate product of flaming
combustion. This camera can only make a qualitative measurement. A result of this
chemiluminescence measurement is shown in figure 3.11(b).

The normal pictures shown in figure 3.11(a) show that the front is straight and almost
horizontal. Unlike in the base case, no inclined front at the left side is seen. Also
hardly any flames are seen above the solid layer, but intense glowing is observed. The
chemiluminescence image shows that almost all OH∗ radicals exist in the alumina
layer and hardly any OH∗ radicals are visible above and below this layer. This shows
that the volatiles are burned inside the alumina layer. The alumina layer prevents the
gas phase to radiate to the fuel bed and because of its high temperature, the layer also
insulates the fuel bed. In this case the vertical velocity of the front is 0.44cm/mi n,
which is higher than in the base case. This is probably caused by the decreased heat
loss from the ignition front to the gas phase due to the insulation by the alumina layer.
The horizontal velocity is 0.34cm/mi n which is slightly lower than in the base case.
The lower horizontal velocity can be caused by the absence of flames above the solid
bed and thus no heat can be transferred from the flames to the fresh fuel.

Full front-side insulation

To see the effect of heat losses from the front to the surroundings, the vessel is not
only insulated at the backside, but also at the front-side. Every two minutes the front
insulation is removed for a few seconds to take a picture. Four pictures of the exper-
iment are shown in figure 3.9. The shape of the front is similar to the one from the
base case. It can be seen that the horizontal part is larger and more straight than the
one in the base case (figure 3.10). Also the inclined part is more steep in the current
case. The vertical velocity of the front is 0.45cm/mi n, which is about equal to the
one found with the inert layer on top. The horizontal velocity is 0.50cm/mi n which
is higher than the ones found in the base case and with the inert layer. This is an ex-
pected result, because less heat is lost to the surroundings and can thus be used to
ignite the fresh fuel.
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3.4 Two dimensional ignition front propagation

1

2

34

(a) Four pictures of the experiment combined in one
image. A layer of alumina spheres is put on top of the
fuel bed directly after ignition.

(b) OH∗ chemiluminescence image of the ignition
front.

Figure 3.11: Results from the 2D ignition experiment with an inert layer on top of the fuel bed.

3.4.3 Evaluation

A summary of the front velocities in both directions is given in table 3.2. The vertical
velocities are significantly lower than the ones measured in the 1D ingition experi-
ments (see table 3.1). This can be caused by the fact that the heat losses to the sur-
roundings in the 1D ignition setup were much less than the losses in the 2D ignition
setup.

The main observations of the 2D ignition experiments are:

• When an inert layer is put on top of the fuel bed, the volatiles almost completely
burn inside that layer. The hot inert layer acts as an insulation layer for the fuel
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Table 3.2: Summary of the vertical and horizontal ignition front velocity for the three 2D ignition
experiments

vertical velocity horizontal velocity
base 0.40 cm/min 0.38 cm/min
inert layer 0.44 cm/min 0.34 cm/min
insulation 0.45 cm/min 0.50 cm/min

bed and the gas phase only interacts slightly with the fuel bed in this case. This
causes the vertical front velocity to be higher than in the base case.

• When both sides of the vessel are insulated, the vertical front velocity equals the
one obtained with the inert layer. The horizontal propagation velocity is slightly
larger than the vertical one in this case.

3.5 Modeling

It has been shown that the main mechanism for the vertical propagation of the front
is the radiation inside the fuel bed. Based on this knowledge, a model is derived to
predict the vertical front velocity and the front temperature.

3.5.1 Modeling equations

The solid phase energy balance of the combustion zone (see figure 3.12) is as follows:

σeF (T 4
f −T 4

0 )+h As d f (T f −T0)+ q̇ ′′
0 = ṁ′′

c∆H (3.7)

The first term is the radiative heat loss from the front to the fresh fuel, where σ is the
Stefan-Boltzmann constant, e is the emissivity of the fuel bed which is assumed to
be unity, F is the view factor between the combustion zone and the fresh fuel. Be-
cause these two phases touch each other, the view factor can be assumed to be unity
as well. T f is the combustion zone temperature, which is assumed to be uniform over
the height of this zone, T0 is the initial temperature. The second term is the heat lost
by convective cooling from the primary air flow, where h is the heat transfer coeffi-
cient, As is the specific surface area of the fuel bed. The third term is the nett energy
flux from the front to the surroundings, which can be the reactor or furnace. For the
vertical propagation q̇ ′′

0 only consists of losses and this term will be positive. The left
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3.5 Modeling

hand side gives the heat gain, where ṁ′′
c is the char combustion rate in the combus-

tion zone per cross sectional area of the reactor and ∆H is the heat of combustion of
char to carbon monoxide. The combustion of the carbon monoxide, which is formed
at the surface of the char, takes mainly place above the combustion zone (i.e. in the
flame) and does not contribute to a higher front temperature.

heat

air

v v

df combustion zone

fresh fuel

ignition 
front

heat to 
surroundings

flame

Figure 3.12: Schematic overview of the combustion and ignition front.

To solve this equation, the boundary condition at the lower boundary of the combus-
tion zone can be used. At this boundary, the ignition takes place so it is called the
ignition front. The boundary condition is as follows:

v f ρs cp,s (T f −T0) =σe(T 4
f −T 4

0 ) (3.8)

The equation expresses that the heat needed to heat the fresh fuel to the combus-
tion zone temperature equals the radiation from the combustion zone the this fresh
fuel. In this equation, ρs is the packed fuel density, cp,s is the specific heat of the
fuel and v f is the ignition front velocity. Because this equation is an energy balance
over an infinitely thin front, the convective cooling of the primary air flow can be ne-
glected. To validate this relation,measurement data from Saastamoinen et al. [76],
Fatehi and Kaviany [31] and Gort [39] are used. They measured the front velocity as
well as the temperature in the combustion zone. Figure 3.13 shows the relation be-
tween the measured front velocities and the velocities predicted by equation (3.8). In
about 80% of the cases the velocity predicted by equation (3.8) differs less than 20%
from the measured velocity. It can be seen that the predicted velocities are gener-
ally higher than the measured ones. This is partly caused by the moisture contents
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of the samples which is not included in equation (3.8). This comparison shows that
equation (3.8) gives a reasonable relation between the front temperature and velocity.
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Figure 3.13: The relation between the measured front velocities from [76, 31, 39] and the veloc-
ities predicted by equation 3.8. The black line denotes exact agreement and the two grey lines
indicate 20% deviation.

The two equations (3.7) and (3.8) have to be solved simultaneously to find v f and T f .

heat transfer coefficient

The heat transfer coefficient h can be found according to Bird et al. [17] as follows:

h = k(1−ε)

dp

(
2.19Re1/3 +0.78Re0.619)

with: Re = dpQ

ν(1−ε)

(3.9)

Here, ν is the kinematic viscosity of the air flowing through the bed, k is the thermal
conductivity of the air and Q is the air flow rate. The term dp is an equivalent particle
diameter which is defined as:

dp = 6(1−ε)

As
(3.10)

It can be shown that for cubic particles the equivalent diameter dp equals the particle
diameter for a bed porosity of 0.67. This porosity is close to the porosities of packed
fuel beds found in practice. For spheres, this relation is valid per definition.

front thickness

The optical experiments described in section 3.3.1 show that the glowing front thick-
ness is in the order of the particle diameter. The models from Yang et al. [100] and
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3.5 Modeling

Shin and Choi [78] also show that the front thickness is in the order of the particle
diameter. So as an approximation for the front thickness the equivalent particle di-
ameter dp from equation (3.10) is used.

d f = dp = 6(1−ε)

As
(3.11)

The particle diameter now appears only in the heat transfer coefficient h and in the
energy balance (3.7) and it can be seen that the particle diameter (or front thickness)
is eliminated from the system of equations. The geometry of the particles appears in
the system through the specific surface area of the fuel bed.

char combustion rate

The form of the char combustion rate ṁ′′
c is dependent on the overall equivalence

ratio and can be expressed as:

ṁ′′
c =

{
f (K ,hO2 ,YO2 ) rich conditions (low air velocity);
v f ρc lean conditions (high air velocity).

(3.12)

In the rich condition, the char combustion rate is a function of chemical kinetics,
oxygen mass transfer and oxygen concentration. In rich conditions a char layer build
up above the ignition and combustion front. This is described by Gort [39]. In lean
conditions the combustion zone has a constant thickness. In this condition, the char
combustion rate is determined by the front velocity.

heat losses to the surroundings

The heat losses to the surroundings are hard to determine exactly and depend mainly
on the reactor design. The influence of the losses will be investigated with a sensitivity
analysis.

radiation

The system of (3.7) and (3.8) can be solved analytically, but this will result in very
complex expressions for v f and T f due to the fourth order temperature term in the
radiation. To be able to solve this system analytically, the radiation term is approxi-
mated by second order accuracy. Note that the linearization used in equation (3.2) is
not used in the model, because this would result in a temperature independent front
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velocity. Experiments showed this is not the case and a linearization would be an
over-simplification in this case.

σe(T 4
f −T 4

0 ) = κ(T f −T0)2 with: κ=CσeT 2
f ,av g (3.13)

The result is a second order system, which can be solved easily. The term κ is the
radiation approximation term. It can be shown that the constant C equals 1.65 for
flame temperatures of 1350 K. To validate the approximation for the radiation, the
results from the simplified model are compared to the exact results from equations
(3.7) and (3.8) in figure 3.14. Both systems are solved numerical and only one situation
is modeled and no losses are modeled. The figures are just to compare the second
order simplification with the exact solution. It can be seen that the temperature is
not influenced that much by the approximation. The velocity however, is changing
more. This is due to the sensitivity of the front velocity on the temperature which is
cubic. So a small change in temperature can lead to a significant change in velocity,
especially for high temperatures. The error in the velocity is about 20% in this case.
There are two reasons why this linearization is legitimate for predicting ignition front
velocities:

• in the experiments on ignition front velocity, errors of around 20% are common;

• the losses to the surroundings are difficult to predict and measure. It will be
shown later that the velocity can be predicted with about only 60% accuracy
due to these unknown heat losses.

The drawback of this method is that the constant κ is a function of the variable T f ,av g

which is not known yet. An initial guess has to be made for κ to solve the system.

3.5.2 Dimensional analysis

Equations (3.7) and (3.8) can be solved simultaneously to find the combustion zone
temperature T f and the ignition front velocity v f . The rearranged system is:


T f −T0 =

ṁ′′
c∆H − q̇ ′′

0 −κ(T f −T0)2

h As d f

v f =
κ(T f −T0)2

ρs cp,s (T f −T0)

(3.14)

In the system, the primary air velocity is not included directly. However, the often
measured relation between the primary air flow velocity and the front velocity (see
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3.5 Modeling
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(a) Front temperature results of the exact solution and the second
order approximation.
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(b) Ignition front velocity results of the exact solution and the sec-
ond order approximation.

Figure 3.14: Front temperature results (a) and ignition front results (b) of the exact solution from
equations (3.7) and (3.8) and the second order approximation from equation (3.13).

for example [39, 76]) appears in the system through the heat transfer coefficient h,
which is a function of the primary air velocity.

The variables T f and v f are made dimensionless as follows:

T f = T0θ f

v f =
κT0

ρs cp,s
ψ

(3.15)

In this equations, θ f is the dimensionless temperature and ψ is the dimensionless
ignition front velocity. When the initial system is expressed in the non-dimensional
variables, the following non-dimensional system is the result:
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θ f −1 = ṁ′′

c (ψ)∆H − q̇ ′′
0 −T 2

0 (θ f −1)2

T0h As d f

ψ= θ f −1

(3.16)

From the dimensionless system (3.16) it follows that only a solution for θ f −1 has to
be found to solve the system. So the system of two equations with two variables can
be reduced to one equation with only one variable (ψ or θ f −1) when the equation for
ψ is substituted. The solution to this equation is:

θ f −1 =ψ=−1

2
E x + 1

2

√
E x2 −4Lo (3.17)

with:

E x = h As d f

κT0
− A

ρc∆H

T0ρs cp,s

Lo = q̇ ′′
0

T 2
0 κ

− (1− A)
Qρa∆HCOε

T 2
0 κ

(3.18)

For A = 1 the excess energy term E x gives the energy that can be used for the front
propagation and the loss term Lo gives the energy losses from the front. As stated
before, the expression of the char burning rate is dependent on the stoichiometry of
the combustion. For rich combustion (low air flow rates) A will be zero and for lean
combustion A will be unity. It will be shown below that only the lean combustion
(A = 1) is relevant in this case.

Experiments from Gort [39] show an ignition rate of around 0.07kg /m2s for both 10
and 30mm cubes. At this ignition rate, the char ignition rate is 0.011kg /m2s (with a
fixed char content of 15%). For stoichiometric combustion, the air flow rate should be
0.12kg /m2s, which corresponds to an air velocity of 0.10m/s. Already for air velocities
above 0.10m/s the char combustion can be assumed to be lean. For this reason, only
the lean combustion regime will be considered. In this regime, the heat loss term Lo
is only dependent on the heat losses from the front to the surroundings. These losses
will be influenced by the experimental conditions. However, the experimental setup
primarily determines these losses. For this reason Lo is regarded constant for each
experiment and ψ only varies with the excess energy term E x for each experiment.

For the lean regime, the excess energy term E x has to fulfill the following conditions:

−2
p

Lo < E x < 0 (3.19)

This can be explain as follows:
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3.5 Modeling

• If E x > 0, the convective heat loss is larger than the heat produced by the reac-
tion. No ignition will take place in this case.

• For E x < −2
p

Lo, there exists no real solution for (3.17) can be found and ex-
tinction is the result. The physical background for this extinction will be shown
later (eq. (3.20)). This requirement can also be stated as: ψ>−1/2E x. Which is
a useful boundary of operation.

There is only one requirement for Lo: Lo > 0. The heat lost from the system is repre-
sented by Lo, this heat loss can not be negative.

In the second criterion, ψ > −1/2E x is mentioned as a lower boundary for ψ. When
the heat losses are zero (Lo = 0) the upper boundary for is found: ψ<−E x.

From the viewpoint of process control, only a few parameters can be used to control
the ignition front velocity: the heat transfer coefficient h, the initial temperature T0

by using preheated primary air and the energy flux from the fuel to the surroundings
q̇ ′′

0 . The model seems not to depend on oxygen concentration in the primary air (if
still in the lean regime). However, the heating of the inert nitrogen can be regarded as
losses to the surroundings. So when the oxygen concentration is increased, it is to be
expected that both the ignition front velocity and the combustion zone temperature
increase. The other parameters are fuel properties which can not be changed on-
line. However, the model shows that an increased char content results in an higher
excess energy term. This will result in an higher ignition velocity. On the other hand,
an increased product As dp results in a lower excess energy term and thus a lower
ignition velocity and a higher chance on extinction.

3.5.3 Results

The model is validated with experimental data from Gort [39], Saastamoinen et al.
[76] and Horttainen et al. [46]. These researchers measured the vertical ignition front
velocities in a packed bed of wood for various wood types, particle sizes and primary
air velocities. They all used lab-scale setups.

To validate the model with the measured front velocities, the measurement data have
to be made dimensionless according to (3.15). For this, an approximation for the ra-
diation approximation term κ (eq. (3.13)) has to be made depending on the average
front temperature T f ,av g which is not known in advance. The system has been solved
iteratively to converge to matching values of κ and T f ,av g . This is due to the simpli-
fication made in (3.13) on the radiation term. The values of κ are listed in table 3.3
together with the relevant properties of the fuels from which the experimental data is
used.
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Table 3.3: Relevant properties of the fuels used for validation. ∆H = 33 M J/kg and ρc = 0.155ρ f
are used for the lower heating value of char combustion and char density respectively.

Fuel type As ρ f cp, f ε dp ref. κ

[m2/m3] [kg /m3] [k J/kg K ] [-] [mm] [W /m2K 2]
cubes 10mm 200 200 2.7 0.7 9.0 [39, 14] 0.1600
cubes 30mm 70 200 2.7 0.7 25.7 [39, 14] 0.1680
spruce chips 5-20mm 251 157 2.7 0.62 9.1 [76, 14] 0.1790
chips 1x35mm 193 58 2.7 0.87 4.0 [76, 14] 0.1935
pellets 5mm 533 640 2.7 0.32 7.7 [46, 14] 0.1570
pine chips 5-20mm 171 145 2.7 0.71 10.2 [46, 14] 0.1550
shavings 945 120 2.7 0.74 1.7 [46, 14] 0.1765
pine chips 2 5-20mm 171 145 2.7 0.71 10.2 [46, 14] 0.1595
pellets 10mm 259 550 2.7 0.41 13.7 [46, 14] 0.1480
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Figure 3.15: The results from the model (eq. (3.17)) for the lean regime. Plotted is the dimension-
less ignition front velocity ψ against the excess energy term E x for several values of the heat loss
term Lo. Experimental data from literature is included for validation. The region between the
grey lines is the region in which a mathematical solution for ψ can be found and thus ignition
may take place. (see text for explanation)
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3.5 Modeling

The result from the model is shown in figure 3.15 together with the experimental re-
sults. The upper grey line gives the values for ψ (or θ f −1) for Lo = 0. As described
before, when Lo = 0, no heat losses are present. For vertical front propagation, this is
the asymptotic situation and the dimensionless ignition front velocity ψ can not be
in the region above this line. The lower grey line gives the lower boundary for ψ for
which a real solution can be found from equation (3.17). This line results from the cri-
terion psi >−1/2E x mentioned before. When the criterion for this line (E x =−2

p
Lo)

is rewritten with physical parameters (with the use of (3.15)) and the second equation
of (3.16)) the following equation can be found:

vρc∆H = h As d f (T f −T0)+2(T f −T0)
√

q̇ ′′
0κ (3.20)

The left hand side of this equation is the heat produced by the combustion of char.
The first term of the right hand side is the convective loss and the second term is a
kind of root mean square of the radiative (κ) and other heat losses (q̇ ′′

0 ). The equation
shows that when the heat losses are equal to the heat produced by the combustion,
the threshold for extinction is reached. This is physically correct. Also Shin and Chio
[78] mention criteria for extinction. However, they only give qualitative relations.

Figure 3.15 shows that the experimental results should be between the two grey lines
representing the upper and lower limit for the ignition front velocity.

The two black lines give ψ for a constant value of Lo. Because in the lean regime
the heat losses are assumed constant for each experiment, the experimental results
should follow the trends for constant values of the loss term Lo. The two data-sets
from Gort [39] follow the trends reasonably good (at least for lower E x). With excep-
tion from the 1x35mm particles from Saastamoinen [76] and the pellets of Horttainen
[46] the data-sets from the other researchers follow the trends reasonably well. The
difference between the model and the results from Horttainen can be explained by
the fact that the pellets have a density of about twice the density of untreated wood.
It is known that the thermal conductivity is linear dependent on the density. Besides,
the packed pellets have a porosity which is twice as low as the other analyzed beds.
This results in a lower radiation-conduction ratio (see (3.2)) and radiation is not the
most important heat transfer mechanism anymore. The model under-predicts the
values for ψ, which is expected.

In figure 3.16 a dimensional result is given. The front velocity v f is plotted against
the primary air velocity Q (appearing only through h). Results for four values of the

term ∆Hρc
ρ f cp, f T0

are plotted. This term gives the ratio between the heat produced by

the glowing char and the heat needed to heat up the fuel bed. For a fuel or a fuel
mixture with a high volatile content (for example plastics) or a high inert content (for
example glossy paper), this term decreases and the figure shows that the front velocity
decreases. It is important to note that the total heating value of the fuel does not
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determine the front velocity, only the heating value of the remaining char is relevant
for the vertical front propagation.
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Figure 3.16: The dimensional results from the model (eq. (3.17)) for the lean regime. Plotted is
the dimensional vertical ignition front velocity v f against the primary air velocity Q for several

values of
∆Hρc

ρ f cp, f T0
. Furthermore, κ= 0.16 and q̇ ′′

0 = 60kW /m2 are assumed.

As in figure 3.15, the extinction region can be seen in figure 3.16 as well. For low values

of ∆Hρc
ρ f cp, f T0

and high values of Q, no real solution for the front velocity could be found.

The figure shows that in this case, the minimal front velocity is 0.2m/s. This value is
also found by Gort [39] for 10mm particles with 10% and 30% moisture content.

heat losses

The value of Lo is dependent on the losses to the surroundings. These losses are
mainly determined by the experimental setup, but also the fuel type has some in-
fluence. It is beyond the scope of this work to exactly determine the losses, so exact
values of Lo are not presented for the experiments.

However, an estimate can be made for the inaccuracy of the model due to the un-
known heat losses. If the system is close to extinction (relative high heat losses), the
relation E x ≈ −2

p
Lo holds. With (3.15) and (3.17) the following is valid close to ex-

tinction:

v f =
κT0

cp, f ρ f

p
Lo (3.21)
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3.5 Modeling

From this, and the definition for κ (eq. (3.13)) and Lo (eq. (3.18)), the following rela-
tion holds:

v f ∼ T 2
f ,av g

√
q̇ ′′

0 (3.22)

From this relation, it can be seen that the dimensional velocity is quadratically de-
pendent on the average dimensional front temperature. An estimate for the accuracy
of the measured temperature would be 10%. This implies in an uncertainty for the
velocity of about 20%. The linearization of the radiation which has been done before
is shown to be within this uncertainty. If it is assumed that the major part of the heat
losses are due to radiation, the velocity is even dependent on the fourth power of the
temperature. In this case the uncertainty is even 40%. So an accurate front tempera-
ture is needed to quantify the front velocity with reasonable accuracy.

3.5.4 Application on two dimensional ignition front propagation

For the horizontal front propagation, two driving heat sources can be distinguished:
(1) radiation from the char combustion to the virgin fuel and (2) radiation from above
via the flame and furnace walls (see figure 3.17).

ignition front

movement

burning wasteheat from 
the front

heat from 
the furnace

Figure 3.17: The two heat sources for the horizontal front movement: (1) radiation from the char
combustion to the virgin fuel and (2) radiation from above via the flame and furnace walls.

If the radiation from the furnace is small, the char combustion is the driving mech-
anism for the horizontal front movement. In that case, the model presented in the
sections before is also valid for the horizontal front movement.

On the other hand, when the radiation from the furnace walls is large, the fresh fuel
will be ignited by this heat flow. Chapter 6 of this thesis deals with the piloted ignition
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of solid fuels under a radiative heat flux. The results in this chapter show that with an
radiative flux of 140kW /m2 (calculated flux in the first zone [87]), the time needed to
ignite 30% moist red oak is less than 30 seconds. This means that the waste almost
directly ignites when it enters the furnace. In practice, this is not experienced. It
is explained in chapter 6, that a critical primary air flow exists above which the fuel
will not ignite. For a radiative heat flux of 140kW /m2, this critical primary air flow is
0.02kg /m2s, which is smaller than the usually applied 0.3kg /m2s. This means that
ignition can not be achieved by radiation of the furnace alone and the heat from the
ignition front is important again.

3.5.5 Sensitivity analysis on the heat transfer coefficients

Because the radiative heat transfer plays an important role in this work, a sensitivity
analysis on the parameter κ that is used to linearize the radiation term (eq. (3.13)) has
been carried out. Besides, a sensitivity analysis on the heat transfer coefficient h has
been carried out. The results of these sensitivity analyses are presented dimensional
in figures 3.18.

The figures show that the solution is much more sensitive to a variation of the radia-
tive heat transfer than it is for the convection. This is an expected result, since also
Shin and Choi [78] predict the radiative heat flux to be about 4 times higher than the
convective heat flux.

3.6 Application on full size waste and biomass incin-
eration

The derived model can be used to control the combustion process in waste and
biomass incineration plants. The lower limit of operation as can be seen in figure
3.15 can be used to prevent the flame to travel too close to the chute. It has been
explained before that the horizontal front movement accounts for the flame stability.

For low radiative fluxes from the furnace to the fuel bed, the mechanisms for the front
propagation in the two (or all) directions are the same and the horizontal and vertical
ignition front velocity are more or less coupled. So when the flame travels to the en-
trance of the furnace, it is likely that the fire will reach the grate earlier. On the other
hand, when the flame travels to the exit of the grate, probably the fire will reach the
grate later. This can result in bad burnout. Besides, when the flame is at the backside
of the grate, the time for the waste to achieve burnout is less. These two effects of a
low ignition front velocity are important for the control of the combustion process.
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3.6 Application on full size waste and biomass incineration
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(a) The predicted influence of the radiative heat transfer κ.
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(b) The predicted influence of the heat transfer coefficient h.

Figure 3.18: The dimensional front velocity as a function of the primary air flow velocity for
varying values of κe f f (a) and h (b).
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However, the application of the experimental and modeling results on a full size waste
incineration process should be done with care. On these four main points a full size
process differs from the experiments described in this chapter:

• inhomogeneous fuel (only for waste combustion);

• radiation from the hot furnace walls;

• moisture content;

• mixing.

These differences are elaborated in the next sections.

3.6.1 Inhomogeneous fuel

The inhomogeneity of the fuel can cause fluctuating front velocities in any direction.
Ramström and Larfeldt [69] measured an unexpected high temperature on top of a
90% biomass and 10% plastics fuel bed close to the entrance of the furnace. This
high temperature was found to be independent of the moisture content and may be
caused by the easy ignition of plastics. Beside this, they found that the moisture is
mainly present in the wood and that the plastics are almost dry. Also close to the
entrance they measured relatively high grate temperatures. Their explanation is that
spontaneous ignition occurs early on the grate. However, another explanation could
be the easy ignition of the plastics as well, causing the ignition front to travel fast
though the fuel layer to the grate.

Not only variations in chemical properties can influence the front propagation, but
also variations in thermal properties can have an effect. The metals in the waste are
highly conducting and this can result in a faster heat transfer to the fresh fuel and thus
a faster ignition front propagation.

On the other hand, a moist area in the fuel bed can cause the front to slow down or
even stop in either direction.

3.6.2 Radiation from the hot furnace walls

For low radiative heat fluxes from the furnace (for example in the two dimensional
optical experiments) the leading mechanism for the front movement in the two di-
rections is the radiation from the char combustion. As has been explained earlier in
this chapter (derived from chapter 6), for high radiative fluxes from the furnace, the
location of the ignition at the surface to the fuel layer is determined by the primary
air velocity.
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3.6 Application on full size waste and biomass incineration

The furnace radiation is largely dependent on the furnace geometry. In case of a par-
allel flow furnace, the radiation to the fresh fuel will be considerably less than in a
counter flow furnace. A realistic maximum wall temperature is 850oC [50]. The tem-
perature in the first zone in a counter flow furnace will be close to this value, but in a
parallel flow furnace the wall in the first zone is most likely colder.

For the vertical ignition front movement, the furnace radiation is not important. Be-
cause the fresh fuel is covered with ash and glowing char, the furnace radiation can
not reach the fresh fuel under the ignition front.

3.6.3 Moisture content

The presence of moisture is not included in the current model, but for relatively small
moisture contents, the influence could be roughly approximated by decreasing E x
(in fact, decreasing ∆H/ρs ). Because the latent heat of evaporation is neglected by
this method, this simplification is not suitable for larger moisture contents. However,
figure 3.15 shows that for increasing moisture contents (decreasing E x), the ignition
fronts will be slowed down (following the constant Lo lines) and they will extinguished
when E x is too low. Extinction can also happen in the horizontal direction.

3.6.4 Mixing

In modern incinerators the mixing of the fuel bed on the grate takes place due to the
movement of the grate. In lab-scale experiments in pot furnaces, no grate movement
or mixing occurs and also the model does not include this. When mixing is consid-
ered, the convective transport of heat (by mixing the hot burning fuel with cold fuel)
will be an important heat transfer mechanism and it can be even more important
than radiation inside the fuel bed. The result is that in equations (3.7) and (3.8) the
radiation term should be replaced by an effective convective heat transport term due
to mixing. This term is dependent of the path and velocity of the fuel particles and.
Warnecke [94] calculated that the waste makes a circular motion on a forward acting
grate. This makes it difficult to estimate an effective convective heat transport term,
because the locations of the "loops" should be known. The increased heat transport
by mixing will increase the excess energy term (i.e. E x will become more negative)
and decrease the loss term Lo (see equation 3.18) and a larger front velocity will be
the result.
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3.7 Conclusions

When the furnace radiation is small, for both the vertical and horizontal propagation
of the ignition front, the glowing char appears to be the main source of heat. As a
consequence, the volatile combustion can be neglected completely which simplifies
modeling significantly. A model is developed to predict the vertical front propagation
velocity. The results from the model are compared to experimental results and the
trends are predicted good. It is difficult to predict the actual experimental front veloc-
ities because of the unknown heat losses in the experiments. However, an upper and
a lower boundary for the front velocity are derived. Because the ignition propagation
mechanisms are the same for both directions, the model can be applied for simulat-
ing front propagation velocities in all directions. For high furnace radiation, the front
location at the surface of the fuel bed is determined by the primary air velocity.
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A fuel bed can be ignited by blowing preheated air through it. This
chapter presents experiments on this process. The minimum air tem-
perature needed to ignite packed beds of wood, char and RDF are
measured. This temperature is called the critical air temperature.
Also the bed temperature at ignition and the time to ignition are mea-
sured. This temperature is called the spontaneous ignition temper-
ature. The influence of moisture content, particle size and the air
velocity are investigated. Wood chips are shown to ignite under an
preheated primary air flow of 230−245oC and char at an air flow of
170− 200oC . Increasing the primary air velocity results in both an
increased critical air temperature and spontaneous ignition temper-
atures.

4
Spontaneous ignition experiments
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4.1 Introduction

4.1 Introduction

Combustion of municipal solid wastes on a grate is one of the dominant processes
in municipal solid waste combustion (MSWC). However, grate firing is not only used
for MSWC but also for combustion of other solid fuels, such as wood and other bio-
fuels, e.g. straw or chicken-manure, to produce heat and power. For optimal process
control, it is vital to understand the burning process inside the bed [90].

Many MSWC suppliers are using preheated primary air to be able to burn wet fuels
or accelerate the ignition of the waste [89]. For primary air with temperatures up to
150oC only drying of the fresh waste occurs. For higher temperatures, drying and py-
rolysis can occur simultaneously and this can lead to spontaneous ignition [20]. By
preheating the primary air to temperatures above 150oC , the waste can deliberately
be ignited in the zones where this is needed. On the other hand, by using preheated
air, the waste can be ignited undesirably in zones where ignition is unwanted (for
example close to the entrance of the grate). To be able to control the ignition of a
fuel bed by preheated air, the effect of some key parameters such as primary air flow
rate and temperature are investigated in this work. Besides, mechanisms which are
responsible for the spontaneous ignition of the fuel bed by preheated air are investi-
gated.

In the present work spontaneous ignition is defined as the transition from a negligi-
ble or slow fuel reaction rate to a rapid oxidation of either the volatiles or the solid fuel
without the presence of an external source such as a spark or a flame. The sudden rise
in temperature of the bed is used as an indicator to describe this phenomenon. The
lowest bed temperature from which this rise starts, is called the spontaneous ignition
temperature. The minimum air temperature needed for spontaneous ignition to oc-
cur is called the critical air temperature and the elapsed time required to suddenly
rise the temperature is called ignition time.

Not much research is done on this topic. Van Kessel et al. [89, 90] investigated the
combustion of waste with preheated primary air in a lab scale batch reactor. They
mention the possibility of spontaneous ignition of waste at air temperature of 180oC
and they disprove the theory that this is caused by recondensation of moisture on
relative dry parts of the waste. However, no further attention is paid to this phe-
nomenon. Also research is done on the ignition of single particles in a heated air
stream by Kuo and Hsi [54], but this work focuses on the mode of ignition (flaming or
glowing) and the ignition time at temperatures between 400oC and 600oC . They do
not deal with the lowest air temperature at which ignition occurs. The research which
shows the most resemblance with the present work is the research on self-heating,
self-ignition and thermal runaway done by Semenov [77] and Frank-Kamenetskii [33].
Often their analyses are applied to the ignition of coal and char [61] and cellulosic
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materials [83]. These works show that coal can spontaneously ignite with ambient
temperatures well below 100oC . Cellulosic materials need a higher temperature to
ignite. Times to ignition are in the order of days or even longer. In our work, the used
temperatures are higher and different processes will occur.

Since the combustion characteristics are difficult to measure in full-scale plants, the
moving bed is simulated by a batch type fixed bed reactor. Although the heat and
mass transfer in transverse direction and additional particle mixing by the grate bars
affect the local combustion performance, the heat and mass transfer in vertical direc-
tion is the dominant factor (see chapter 3). Therefore, a lab scale packed bed reactor
in the form of a pot furnace can be used as a simplified system to simulate the moving
bed. The time elapsed in the fixed bed corresponds to the residence time of fuel in the
moving bed as has been described by Gort [39].

This chapter presents the effect of primary air flow velocity, particle size, moisture
content and addition of inert to the fuel bed on the spontaneous ignition behaviour
of several solid fuels. Because MSW is very inhomogeneous in both composition and
particle size it is difficult to investigate the influence of fuel parameters on the ignition
behaviour, wood is used as a model fuel. To see the effect of the volatile content, char
is used as a model fuel as well. The inhomogeneous character of MSW is investigated
in the experiments by using RDF.

In this chapter, firstly an analytical evaluation of spontaneous ignition is given. This
evaluation is based on Semenov’s analysis of thermal explosions [77]. Secondly, the
experiments which are carried out are described and the results from these experi-
ments are presented and discussed. Then the results of the experiments are evalu-
ated in the light of the theoretical background and Semenov’s analysis is applied to
predict the spontaneous ignition and critical air temperatures for wood. Finally some
conclusions on the experimental observations and the model results are drawn.

4.2 Spontaneous ignition theory

Semenov’s analysis of thermal explosions [77] is used as a theoretical background on
spontaneous ignition of packed beds. In Semenov’s analysis, the radial (or horizontal)
temperature gradients are assumed to be flat, but this will not be the case in a waste
incinerator. However, when a small part of the waste layer is considered (for exam-
ple the drying zone where preheated primary air is usually applied) the horizontal
temperature gradient can be assumed to be flat in that area. Note that in the classic
Semenov’s analysis, the system transfers heat to the surroundings through the reac-
tor wall of which the thermal resistance is much lower than the one of the fuel bed. In
our case, the system interacts with a uniformly preheated airflow over the total sur-
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4.2 Spontaneous ignition theory

face area of interest, so this system can be treated as zero dimensional. To be able
to properly use Semenov’s analysis, the outer temperature of the particles should not
differ too much from the interior temperature. In the experiments used to measure
the ignition temperatures of wood a slowly increasing air temperature is used. Due to
this slowly increasing air temperature the times to ignition (at least 40 minutes) are
much longer than the time for the core of the 1cm thick particles to heat up to 225oC
with an air temperature of 230oC (about 3 minutes). This shows that at the moment
of ignition the temperature inside the particles can be regarded uniform.

The base of this analysis is formed by an energy balance of the fuel bed. In our case,
this balance consists of two parts:

• The heat generated by exothermic pyrolysis or oxidation of the fuel;

• the convective heat transfer between the primary air flow and the fuel bed.

In figure 4.1 these two energy streams are plotted as a function of the fuel bed tem-
perature. The thick curved line denotes the heat generated by the reactions (q ′′

r eact ).
It is assumed that the reaction rate is controlled by the kinetics. For low temperatures
this is a valid assumption. The three parallel straight lines denote the convective heat
transport from the fuel bed to the air stream for three primary air stream tempera-
tures (q ′′

conv ). These lines cross the x-axis at the air temperature (T0). When q ′′
conv is

negative, the fuel bed is heated by the primary air flow.
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Figure 4.1: Heat produced by the reaction (thick curved line) and the heat lost (positive values)
or gained (negative values) due to convective heat transfer by the air stream for three values of
T0. Adopted from [77].

Depending on the air temperature, ignition might take place or not. In situation a)
in which the air temperature is too low to ignite the fuel bed is denoted by the light
grey line. At the start of this situation, the temperature of the fuel bed is low and the
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hot air stream heats the fuel bed. The reaction is still very slow and not much heat
is produced by the reaction. When the temperature of the fuel is higher than T0, the
air stream cools the fuel. However, the heat produced by the reaction is larger than
the heat lost to the air stream and the fuel will continue to heat up. When the fuel
passes point 1, the heat lost to the air stream gets larger than the heat produced by
the reaction and the fuel will be cooled by the air stream. Point 1 is a stable point and
it has to be noted that the temperature in this point is higher than the temperature of
the air stream even if there is no ignition.

When the air stream temperature (T0) is chosen high, the heat lost to the air stream is
always smaller than the heat produced by the reaction and ignition will occur. This is
situation c) in figure 4.1. However, the moment of ignition can hardly be determined
and thermal runaway is encountered from the moment the experiment starts. Ther-
mal runaway is the situation where the heat gains are larger than the heat losses. An
increase in temperature is the result. So in that sense, ignition occurred from the very
moment the experiment started.

The threshold for ignition is given by situation b) (the dark grey line). The heat lost
by the air stream is never larger than the heat produced by the reaction, so eventually
ignition will occur. This situation gives the lowest air stream temperature at which
ignition will occur. The temperature at point 2 is a critical temperature and the air
temperature T0 corresponding to this situation is the critical air temperature (Tcr i t ).
It has to be noted that at point 2, the slopes of the two lines are equal and a small
deviation in either the reaction heat or the convective heat transport can result in a
relative large difference in the spontaneous ignition and critical air temperature.

It is possible to change the convective cooling by altering the heat transfer coefficient.
This can be done by changing the flow velocity of the air stream. When this velocity is
increased, the heat transfer coefficient will increase as well and the heat lost by con-
vective cooling will be more (the straight lines in the figure will become steeper). A
higher T0 is needed to ignite the fuel. When the air velocity is very low, the reaction
rate for oxidation reactions (such as char combustion) will be determined by mass
transport and this analysis will not be valid anymore. Besides changing the air veloc-
ity, also the particle size can be changed to influence the heat transfer coefficient. For
smaller particles, the heat transfer coefficient will be higher and again a higher T0 is
needed to ignite the fuel bed.

75



4.3 Experimental

4.3 Experimental

4.3.1 Experimental setup

The experiments were carried out at the laboratories of the Dutch research institute
TNO in Apeldoorn. The schematic diagram of the experimental apparatus is shown
in figure 4.2, the reactor is a lab scale packed bed reactor. The height of the reactor is
1350mm with an inner diameter of 150mm. The reactor is insulated with glass fiber
on the outside. The grate is located at the bottom of the reactor and consists of a
distributor plate made of ceramic. Four thermocouples (Pt/Rh, type S) are used to
monitor the temperature of primary airflow and temperature inside the bed at differ-
ent heights. The primary air can be heated up to 275oC and the air flow rate can be
given up to 50m3/h. Every 20 seconds temperature and flow rate signals are send to
a computer. The primary air is fed from the bottom of the fixed bed reactor through
the grate. The air is preheated by an electric heater, installed in the supply line. The
reactor is placed on a balance to monitor the mass of the fuel bed. Samples of the flue
gases are extracted and analyzed.

The lower two thermocouples are positioned in the bed close to the grate. The ther-
mocouples are protected from convection as well as radiation (after ignition) by small
tubes covering the end of the thermocouples.
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Figure 4.2: Schematic overview of the experimental setup. 1-reactor; 2-thermocouples; 3-grate;
4-air flow heater; 5-fuel bed; 6-balance; 7-gas suction probe; 8-heated sample line; 9-suction
pump; 10-gas analyzers; 11-air flow controller.
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4.3.2 Materials

Wood chips

The wood chips consist of a mixture of wood species resulting from forest cutting.
Wood mainly consists of cellulose, hemicellulose and lignin and in general they
cover respectively 40 − 60, 20 − 40 and 10 − 25w t% [96]. The pyrolysis and com-
bustion processes of wood are complex because of the simultaneous degradation of
the three components. The decomposition temperature range of the components is
315−400oC , 220−315oC and 150−900oC , respectively [96]. Because lignin has such a
wide temperature range for decomposition, it decomposes less easily than hemicellu-
lose and cellulose. For temperatures below 300oC the wood decomposition is mainly
attributed to hemicellulose.

For some experiments, the wood chips moisture content has been changed to the
desired value to study the effect of moisture content on the critical air temperature
and spontaneous ignition temperature. This is done by adding some water assumed
that by means of diffusion it will spread through the wood homogeneously [20].

The proximate and ultimate analysis of the wood chips is given in table 4.1 and in
figure 4.3 a picture of the wood chips is shown. Because the wood chips are shredded
forest residue, the composition can vary. The largest dimension of the chips is about
40mm.

Table 4.1: Proximate and ultimate analysis of the wood chip, wood charcoal (from literature)
and RDF.

wood chips char [37] RDF
%C 50.0 92 50
%H 6.56 2.45 6.5
%O 41.5 3 30
%N 0.34 0.53 0.8
%S 0.29 1 0.3
%vol. 82.34 9.4 75
%ash 1.38 1
%moist (a.r.) 9 6.0 3
Hb [M J/kg ] (d.b.) 19.9 34.4 21
Hl [M J/kg ] (d.b.) 33.9 20
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4.3 Experimental

Figure 4.3: Some of the used fuels. Upper left to right: small char (10−15mm), medium char
(15 − 30mm), large char (30 − 40mm). Lower left to right: wood chips (10 − 40mm), stones
(10mm).

Char

Two types of wood char have been used in the experiments. The first type of char
is called commercial char. This char is generally used in barbeque’s. The exact pro-
duction process and the initial material are unknown but it is known that the fixed
carbon content of this char is at least 82%. To study the particle size effect it has been
manually cut into the desired size (small: 10−15mm, medium: 15−30mm and large:
30−40mm).

The second type of char is called lab char. This type of char is made in our laboratory
by keeping the wood chips in nitrogen at 350oC for three hours. The resulting char has
a volatile content of around 40%, which is notably higher than the volatile content of
the commercial char.

The commercial char as well as the inert material used in the experiments are illus-
trated in figure 4.3. In table 4.1, the proximate and ultimate analysis of char is given.

Refuse derived fuel (RDF)

Refuse derived fuel is made of the paper, plastics, wood and other organic compo-
nents from municipal solid waste. The components are dried and pelletized to pellets
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of 16−18mm. The proximate and ultimate analysis of the used RDF is listed in table
4.1.

4.3.3 Experimental procedures and programme

All the experiments with wood and commercial char have been performed with 300
gram and 250 gram of fuel, respectively. To find the critical primary air temperature
and the spontaneous ignition temperature the following three methods can be used:

Constant temperature method; in this method the air is heated quickly to a constant
value. When no ignition takes place, the fuel is removed and a fresh batch is put
into the reactor. A new experiment is started with a slightly higher air temper-
ature. When ignition is found, the current air temperature is the critical one.
This method is suited to find the critical air temperature and the ignition time.
However, for wood and char, the spontaneous ignition temperature can not be
found with this method. This will be further explained in section 4.5.1. The
RDF, lab char and some wood experiments are carried out with this method.

Slowly increasing temperature method; this method is basically the same as the
previous one. However, the air is heated slowly to the desired value. Conse-
quently, with this method it is not possible to determine the ignition time. In
contrary to the previous method, this method is suitable to find the sponta-
neous ignition temperature. Besides, the critical air temperature can be found
as well. The char experiments are done following this method.

Stepwise increasing temperature method; in contrary to the other two methods, in
this method the fuel is not removed from the reactor when no ignition takes
place. Instead the air temperature is increased by steps of 10oC when no igni-
tion takes place. With this method the spontaneous ignition temperature and
the critical air temperature can be found. It has to be made sure that the tem-
perature history does not influence the results. For wood this is the case and
this method gives the same results as the previous method. This method is used
in the wood experiments.

More comments on the effect on the ignition parameters of the three methods will be
given in section 4.5.1.

To study the effect of primary air flow velocity on the critical air temperature and
spontaneous ignition temperature a number of experiments have been carried out at
five air flow velocities (0.1, 0.2, 0.3, 0.4 and 0.5m/s). Besides, the effect of inert in the
fuel has been investigated by substituting a portion of the sample with inert (stone).
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4.4 Results and discussion

Finally, to see the effect of the size of the commercial char particles on the critical air
temperature and on the spontaneous ignition temperature and time, three sample
sizes are prepared (small, medium and large) by manually cutting the char into the
desired size. Overall, more than 100 experiments have been carried out.

4.4 Results and discussion

4.4.1 Wood experiment results

The effect of primary air flow velocity

Figures 4.4(a) shows the spontaneous ignition temperature for wood as a function
of primary air flow velocity at a constant moisture content. Figure 4.4(b) shows the
critical air temperature. It can be seen that both the critical temperature needed for
spontaneous ignition to occur and the spontaneous ignition temperature increase
with increasing primary air flow velocities. This is an expected result, since for higher
air velocities more heat is lost to the air flow due to a better convective heat transfer
and a higher air temperature is needed to ignite the wood. This is also described in
section 4.2. With the constant temperature method, the ignition time is found to be
around 5 minutes (see figure 4.15).When no ignition took place, the bed temperature
was about 5oC higher than the air flow temperature for all air velocities. This indicates
there is an exothermic process going on indeed. Despite this exothermic process, no
thermal runaway is encountered. This situation is denoted by point 1 in figure 4.1.

Especially for the lowest air flow velocity, the scattering of the data considerable. This
can be caused by the sensitivity of the location of point 2 in figure 4.1 as is explained in
section 4.2. When the air flow is low, the heat transfer coefficient is low as well and the
lines denoted by q ′′

conv in figure 4.1 are close to horizontal. The more horizontal the
lines are, the bigger the effect of a minor deviation of the reaction heat or convective
heat transfer are. In general for wood the reproducibility of the results is fairly good
and the measurements are all within 10% deviation.

The effect of inert in the sample

Experiments have been performed to investigate the effect of inert on the sponta-
neous ignition temperature of the wood. For this purpose, stones are used as inert
mixed with wood chips in 20 and 40w t% (inert) proportion for air flow velocities of
0.2m/s and 0.3m/s. The results are compared to the normal situation without inert.
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(a) Spontaneous ignition temperature
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(b) Critical air temperature

Figure 4.4: The measured spontaneous ignition (a) and critical air temperature (b) for wood
chips as a function of the air flow velocity.

As it is depicted in figures 4.5(a) and 4.5(b), increasing the percentage of inert in the
mixture will increase the spontaneous ignition temperature and critical air tempera-
ture. This is due to the fact that the inert absorbs more energy given by the primary
air without producing heat. To compensate that and to start the ignition more energy
is needed, so the ignition temperature increases. This can also be explained with the
help of figure 4.1: by adding inert to the fuel bed, the heat produced by the reaction
decreases. This means that the line q ′′

r eact in figure 4.1 will be less steep and a higher
air temperature is needed to ignite the fuel. Also the spontaneous ignition tempera-
ture (point 2) will be higher. For the last mixture of inert with wood chips (40w t%),
ignition occurs late for an air flow velocity of 0.2m/s and no ignition occurs for the air
flow velocity of 0.3m/s within three hours. This is probably caused by the fact that, at
higher flow velocities the loss due to the convection are higher than at lower air flow
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4.4 Results and discussion
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Figure 4.5: The measured spontaneous ignition (a) and critical air temperature (b) for wood
chips as a function of the mass percentage inert for two air velocities.

The effect of moisture

To investigate the effect of the moisture on the spontaneous ignition temperature of
wood chips samples, the wood chips samples were moistened by spraying the needed
amount of water on it and storing them for two days to make the water diffuse through
the sample. Experiments with a fuel moisture contents of 9− 12.7, 18− 20, 30 and
50w t% have been carried out. In all experiments with a moisture content of the
wood lower than 50w t% comparable critical air and spontaneous ignition temper-
atures have been found.
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However, no ignition could be obtained for wood chips with a moisture content of
50% on a 150 minutes experiment. The grate temperature was only 1oC higher than
the primary air temperature compared to the results for dryer samples which were
5−7oC higher. As the evaporation of the moisture needs energy, the exothermic de-
volatilization is inhibited. Yet, if the fuel bed had been kept for a longer time at this
condition, (temperature and air flow velocity) it would probably have been ignited.

On the whole, with these moisture contents only a few experiments have been per-
formed, therefore, it is not possible to get a reliable relationship between the fuel
moisture content and spontaneous ignition temperature. However, after the mois-
ture is evaporated, the particles can be assumed to behave as dry particles so it is
reasonable to expect no change in spontaneous ignition and critical air temperatures
with varying moisture content. Only the ignition time is likely to change due to the
longer evaporation stage.

4.4.2 Char experiment results

An understanding of the oxidation rate of chars at low temperature is important for
predicting self-heating and spontaneous ignition temperatures. Factors affecting the
spontaneous ignition of char that have been investigated are: the primary air flow
velocity, primary air temperature, particle size, the production method of the char
and the addition of inert to the sample.

In figures 4.6 and 4.7 a typical constant temperature measurement result for the ex-
periments for char can be seen. Figure 4.6 shows the mass of the char and the bed
temperature during the experiment and figure 4.7 shows the concentrations of sev-
eral components in the flue gas. It takes some time before the gas samples reach the
analyzers, so there is a delay in the measured gas concentrations. In this case, the
measurement for the bed temperature shows an ignition time of 1.5 minutes, which
is significantly shorter than the ignition time for wood, which was 5 minutes (see fig-
ure 4.15). Ignition can be identified by the increase in temperature from figure 4.6,
but also the sudden decrease of O2 and the increase in CO2 show that combustion
is taking place (figure 4.7). Because the gas analyzer was located in a different room,
there is a significant time delay for the gas analysis results. Note that these results are
obtained by a constant air temperature. The spontaneous ignition and the critical air
temperature are obtained by using a slowly increasing air temperature.
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4.4 Results and discussion

Bed mass

Figure 4.6: Measured bed mass (black line) and air and bed temperatures (grey lines) as a func-
tion of time for lab char. The superficial air velocity is 0.1m/s and the air temperature is 200oC .
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Figure 4.7: Measured concentration of O2, CO2, CO and Cx Hy as a function of time for lab char.
The superficial air velocity is 0.1m/s and the air temperature is 200oC .

The effect of primary air flow velocity

The effect of the air flow velocity on the spontaneous ignition characteristics of com-
mercial char samples has been examined. Figure 4.8(a) shows the measured sponta-
neous ignition temperature of medium size char particles. Because for char, most of
the experiments are slowly increasing temperature experiments, the critical air flow
temperature is determined in an other way compared to the wood experiments. Fig-
ure 4.8(b) shows the minimum measured (out of minimal four experiments for each
air velocity) air temperature at which ignition occurs. It also shows the maximum air
temperature at which no ignition occurs. The reproducibility of the results for char
are not as good as the ones for wood.
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ignition did not occur (closed symbols).

Figure 4.8: The measured spontaneous ignition (a) and critical air temperature (b) for commer-
cial char as a function of the air velocity.

The figures show that both the spontaneous ignition and the critical air temperature
for char are significantly lower than the ones for wood. This is probably caused by
faster exothermic reaction mechanisms for char at lower temperatures. As can be
seen in figure 4.8(a), the spontaneous ignition temperature of the commercial char
increases with the flow velocity. For high air flow velocity experiments, the air tem-
perature reaches the set air temperature in the heat controller quickly though, the
heat transfer to the char and even more important: inside the char, may not be that
quick due to a high Nusselt number. This means that the inside of the particles is
still cold and no reaction takes place there yet, while the temperature of the outside
of the particles (which is the measured temperature) can be high already. For low
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4.4 Results and discussion

air velocities, the Nusselt number is smaller and the temperature distribution inside
the particles will be more constant. This means that for relative low measured outer
temperatures the particles will be able to start the runaway reactions.

Despite the clear trend, not all batches of char have behaved the same. From figure
4.8(a) it can be seen that when ignition takes place, this is in all cases at a temperature
below 190oC . However, some batches of char did not ignite, even when the bed was at
a temperature of 250oC . This means that not all batches of char are the same and may
be a small variation in geometry or mineral content results in a significant different ig-
nition behaviour. It is also remarkable that the lowest temperatures at which ignition
occurred in figure 4.8(b) are always lower (or equal for 0.4m/s) than the maximum
temperature at which ignition did not take place. This shows that the reproducibility
of the char experiments is low, probably due to variations in the composition and ge-
ometry of the char. With MSW the reproducibility can be expected to be even lower.
With this knowledge, the trend line in figure 4.8(b) has to be interpreted as the mini-
mal air temperature at which spontaneous ignition could occur.

When no ignition took place, the bed temperature of the char was lower than the air
temperature. This indicated that there is an endothermic process going on at temper-
atures lower than the spontaneous ignition temperature.

The effect of addition of inert to the sample

To see the effect of inert on the spontaneous ignition, again the two flow velocities
(0.2 and 0.3m/s) with small particle size have been considered. As it is depicted in
figure 4.9, an increase of the spontaneous ignition temperature with increasing inert
content has been measured. This is caused by the absorption of heat by the inert frac-
tion thus decreasing the available amount of energy to start the spontaneous ignition.
Ignition did not occur for an air velocity of 0.3m/s and 40% inert.

The effect of particle size

The particle size of commercial char may be an important factor in determining
whether or not spontaneous ignition occurs. In general, the rate of oxidation is de-
pending on the external surface area per unit volume of the coal particles which in-
creases with decreasing particle size.

It is measured that the spontaneous ignition temperatures for small size particles are
about 5oC lower than those for medium size particles. The lower spontaneous ig-
nition temperatures may be caused by a larger specific external surface area of the
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Figure 4.9: Measured spontaneous ignition temperatures for small size commercial char as a
function of the mass percentage inert for two air velocities.

smaller particles, resulting in faster oxidation of the char. However, the difference is
too small for detailed conclusions.

4.4.3 RDF experiment results

In figure 4.10 typical experimental results for RDF can be seen. The ignition time in
this experiment is about 40 minutes, which is an order longer than in the case of wood
and char. This can be caused by the fact that the RDF has a higher density (500kg /m3

versus about 200kg /m3 for wood and even less for char), so the RDF does not heat
up as fast as wood or char. The air temperature does not have a clear influence on
the ignition times, however, when the air velocity is reduced to 0.1m/s, the the igni-
tion times are around 80 minutes. This supports the idea that the heating of the fuel
determines the ignition time, not the kinetics.

For RDF there is a typical pre-ignition stage which lasts from 2000 seconds until igni-
tion at 2250 seconds in this case. This behaviour is probably caused by the different
decomposition mechanisms for the several components found in RDF.

Figure 4.11(a) shows the spontaneous ignition for RDF as a function of primary air
velocity. Figure 4.11(b) shows the critical air temperature as a function of the air ve-
locity. Like with wood and char, the increasing trend with air velocity is observed here.
It is noted that the spontaneous ignition temperature cannot be determined precisely
due to the pre-ignition stage. However, figure 4.10 shows that the bed temperature is
higher than the air temperature at ignition.
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4.4 Results and discussion

Bed mass

Figure 4.10: Measured bed mass (black line) and air and bed temperatures (grey lines) as a func-
tion of time for RDF. The superficial air velocity is 0.3m/s and the air temperature is 220oC .

4.4.4 General experimental observations

In this section, some qualitative observations that are made during the experiments
are described.

When two equal experiments with wood chips were carried out successively, an in-
crease in critical primary air temperature and spontaneous ignition temperature has
been noticed in the second experiment. The effect is even stronger if the first exper-
iment is done with low air flow velocities. During inspection of the reactor, it is no-
ticed that a significant amount of unburned volatiles condensed on the reactor wall.
Subsequently, in the second experiment, the condensed tars will consume energy to
evaporate and a higher temperature is needed to provide enough energy to ignite the
fuel. For further investigation, two consecutive experiments with two air flow veloci-
ties (0.2 and 0.3m/s) have been carried out. It is found that both the critical air tem-
perature and the spontaneous ignition temperature are in general 5oC higher when
a wood experiment is preceded by another wood experiment. To avoid this memory
effect, the first wood experiment is followed by a char experiment to burn the con-
densed tars from the reactor wall. The char is only used to clean the reactor and no
data is used from these runs. It has been shown that the measured temperatures for
wood are more reproducible when an experiment with char is performed between the
two wood experiments.

In some of the commercial char experiments, a significant delay of the spontaneous
ignition has been observed. In general, for all experiments the initial ignition does
not occur at the exact location of one of the thermocouples inside the fuel bed. In this
case the ignition front has to travel a certain distance through the bed to be sensed by
one of the thermocouples and the measured ignition time will be an over-estimation.
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(a) Spontaneous ignition temperature
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Figure 4.11: The measured spontaneous ignition (a) and critical air temperature (b) for RDF as
a function of the air velocity.

Because the wood ignition is accompanied with a flame which can be sensed by the
higher thermocouples easily, this delay is expected to be minimal for wood. However,
the char ignition is only heterogeneous and the delay in ignition time can be signifi-
cant. This is especially the case with large char particles.

To study the process behaviour after spontaneous ignition has occurred, two experi-
ments at different air flow velocities with more than 1 kg wood chips have been car-
ried out in the laboratory setup as a comparison. These experiments have been con-
ducted, since in every other experiment only 300 gram of wood has been used cover-
ing only the first two thermocouples.
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4.4 Results and discussion

The first experiment is carried out at an air flow velocity of 0.2m/s and an air tempera-
ture of 230oC . Figure 4.12 shows the temperatures measured by the thermocouples at
the specified bed heights for this air flow velocity. It can be seen that the ignition first
occurs at 20cm above the grate, and the temperature at 5cm above the grate increases
subsequently. After that the high-temperature front travels upwards. The duration of
the conversion process after the breakthrough is small (5−15mi n), compared to the
time before the breakthrough 40mi n.
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Figure 4.12: Measured temperatures in a deep fuel bed of wood chips. Air flow velocity is 0.2m/s.
Air flow temperature is 230oC . The inset shows the moment of ignition in more detail.

The second experiment was carried out at an air flow velocity of 0.3m/s and primary
air temperature of 230oC (see figure 4.13). At this flow velocity the spontaneous ig-
nition starts in the bed at 35cm above the grate. Next, the thermocouple below (at
20cm above the grate) and above (at 50cm above the grate) show an increase in tem-
perature. Finally, the thermocouple located 5cm above the grate shows an increase in
temperature. The time taken for the ignition at 0.3m/s is slightly higher than 0.2m/s.
This may be due to the cooling effect by the higher air flow velocity.

From the above experiments, we may conclude that:
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Figure 4.13: Measured temperatures in a deep fuel bed of wood chips. Air flow velocity is 0.3m/s.
Air flow temperature is 230oC . The inset shows the moment of ignition in more detail.

• The initial ignition does not occur at the grate, but 20−35cm above the grate.
After the initial ignition, a reaction fronts travels upwards and another reaction
front travels downwards;

• For a flow velocity of 0.2m/s, the reaction front travels quickly downwards, due
to the presence of dry fuel and already formed char in the bottom of the fuel
bed. Besides, close to the grate, the air is still oxygen-rich. However, for the flow
velocity of 0.3m/s this front does not travel downwards fast.

It is not clear why the ignition does not take place at the grate. It can be caused by
the inhomogeneous composition and geometry of the fuel bed. Another explanation
could be that, as it is described in section 4.2, a small deviation in reaction or con-
vective heat transfer parameters can cause a relative large deviation in spontaneous
ignition and critical air temperatures. The deep bed experiments show that it is diffi-
cult to predict at which height in the fuel bed the ignition will take place.

An experiment with wood chips was carried out with an air flow of 0.3m/s and a tem-
perature of 230oC . No ignition took place and the bed temperature stabilized and
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Figure 4.14: Measured temperature and fuel bed mass as a function of time. A band-stop filter is
applied on the mass signal to eliminate oscillations between 4 and 40mH z. The experiment was
started with an air flow velocity of 0.3m/s and a temperature of 230oC . At t = 0 the air flow was
turned off.

after a while, the air flow was shut off. Figure 4.14 shows the change in bed tem-
perature and mass after the air flow was stopped. A band-stop filter is applied on
the mass signal to eliminate frequencies between 4 and 40mH z that are most likely
a measurement error. From the rising bed temperature and the decreasing mass it
can be concluded that an exothermic reaction is remaining after the air flow is turned
off. This behaviour can be explained with the help of figure 4.1. With the air flow
still on, the stable point 1 is reached and the bed is cooled by the air flow. When the
air flow is now stopped, the convective cooling ceases and the exothermic reaction is
able to proceed. The measured behaviour shows that the exothermic reaction pro-
ceeds without oxygen so it is a pyrolysis reaction. If this pyrolysis reaction was the
only reaction, the temperature should have increased exponentially. However, a new
stable temperature of around 380oC is reached. This shows that besides the exother-
mic pyrolysis reaction also one or more endothermic pyrolysis reactions are going on
at higher temperatures (above 300oC ). In section 4.5.2 the pyrolysis reactions are de-
scribed into more detail.

4.5 Evaluation

4.5.1 Differences in experimental methods

The different results from the different methods to determine the ignition temper-
ature described in section 4.3.3 will be explained with the help of the results of the

92



wood experiments.

A typical measurement result with the constant air temperature method for wood can
be seen in figures 4.15 and 4.16. Figure 4.15 shows the mass of the fuel and the bed
temperature during the experiment and figure 4.16 shows the concentrations of sev-
eral components. It takes some time before the gas samples reach the analyzers, so
there is a delay in the measured gas concentrations. The measurement for the bed
temperature shows an ignition time of 5 minutes. Note that this is with an air velocity
of 0.1m/s. Again, ignition is indicated by both the temperature increase from figure
4.15 and the decrease and increase of oxygen and carbon dioxide respectively (figure
4.16).

Bed temperature

Figure 4.15: Measured bed mass (black line) and bed and air temperatures (grey lines) as a func-
tion of time for wood chips. The superficial air velocity is 0.1m/s and the air temperature is
230oC .
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Figure 4.16: Measured concentration of O2, CO2, CO and Cx Hy as a function of time for wood
chips. The superficial air velocity is 0.1m/s and the air temperature is 230oC .
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4.5 Evaluation

It can be seen that the bed temperature is only 150oC when it ignites. However, this
is not the spontaneous ignition temperature of the wood. The temperature measure-
ment does not show a clear ignition point. Because the heat lost to the air stream is
always smaller than the heat produced by the reaction, no clear moment of ignition
can be defined. The thermal runaway (which is ignition in our case) starts as soon
as the experiment starts (black line in figure 4.1). If the air temperature is chosen
closer to the critical air temperature, this effect will be less pronounced and if the air
temperature is close enough, the spontaneous ignition temperature can be measured,
but this is a time consuming procedure. This illustrates that the constant temperature
method is not suitable for determining the spontaneous ignition temperature.

An example of an experiment carried out with the slowly increasing air temperature
method is shown in figure 4.17 for 0.3m/s. By slowly increasing the air temperature
(T0 in figure 4.1) point 2 in figure 4.1 is reached slowly and can be determined accu-
rately. The first notable difference with the constant air temperature experiment is
that the time to ignition is at least an order of magnitude longer. This is inherent to
the measurement method, because the bed is slowly brought to its runaway point.
This shows that this method is not suitable for measuring ignition times. The second
important difference is that the bed temperature is higher than the air temperature
at ignition. Besides, the start of the runaway (ignition) can be seen clearly at 4285
seconds and a temperature of 247oC . However, more experiments are needed to de-
termine the critical air temperature.

The critical air temperature can be determined together with the spontaneous igni-
tion temperature in a single experiment when the stepwise increasing air temperature
is used. The result from such an experiment is shown in figure 4.18. The critical air
temperature is 240oC and the spontaneous ignition temperature is 249oC (which is
almost the same as in the slowly increasing temperature method).

4.5.2 Heats of reaction

In reality, the shape of the heat of reaction line is not as simple as depicted in figure
4.1. The reaction mechanism of wood is complex, but the kinetics of several types
of wood are well documented. As has been posed in section 4.3.2, wood pyrolysis is
often modeled by the sum of the pyrolysis of its main components (i.e. hemicellu-
lose, cellulose and lignin) [40, 96, 63]. The kinetics of these pyrolysis reactions are not
differing too much in literature. Hemicellulose is the most reactive and decomposes
between around 220oC and 315oC . Cellulose decomposes between 315oC and 400oC
and lignin decomposes slowly over a wide temperature range (160oC−900oC ) [96]. So
for temperatures below 300oC , wood degradation can be attributed to hemicellulose
degradation for a great extent. Although the kinetics of these three reactions are fairly
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Figure 4.17: Measured bed and air temperatures as a function of time for wood chips and a low
heating rate. The superficial air velocity is 0.3m/s and the air temperature is slowly increasing to
240oC .

well known, values for the heats of reaction are scarce in literature. However, Yang
et al. [96] found that hemicellulose and lignin pyrolysis are exothermic and cellulose
pyrolysis is endothermic. The overall heat of pyrolysis has been measured by Rath et
al. [71]. The most important conclusions that can be drawn from the papers from
Yang et al. and Rath et al. [96, 71] are:

• wood pyrolysis is slightly exothermic at temperatures between 200oC and
325oC mainly due to the hemicellulose pyrolysis;

• between 320oC and 380oC the endothermic cellulose pyrolysis determines the
heat of reaction;

• the degradation of wood for temperatures up to 300oC can be attributed to the
hemicellulose degradation.

From this it can be concluded that the spontaneous ignition temperature of wood
will be above 200oC , which is in agreement with the experiments. Note that the reac-
tion heat comes from an exothermic pyrolysis reaction. This means that also elevated
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Figure 4.18: Measured bed and air temperatures as a function of time for wood chips and a low
heating rate. The superficial air velocity is 0.3m/s and the air temperature is increased stepwise:
220−230−240oC .

temperatures can be reached without oxygen at all. At around 320oC the endother-
mic cellulose pyrolysis starts and the temperature of the fuel bed will stabilize without
oxygen (with oxygen the fuel would have been ignited already). This behaviour is seen
in the experiment where the air flow was stopped after no ignition took place (see fig-
ure 4.14).

For wood charcoal, no ignition data is found in the literature for the temperature
ranges considered in the measurements. The heat of reaction is measured at the
University of Twente using differential scanning calorimetry (DSC) for three types of
wood charcoal in air. The charcoal samples are produced by keeping wood pellets for
three hours at either 350oC , 500oC or 650oC in a nitrogen environment. The results
can be seen in figure 4.19. It can be seen that the charcoal interaction with oxygen
switches from endothermic to exothermic between 150oC and 200oC . From this data
it can be concluded that the spontaneous ignition of charcoal cannot be lower than
150oC . This statement is supported by the experiments. These heat of reaction pro-
files could also explain why the bed temperature is lower than the air temperature
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at temperatures below the spontaneous ignition temperature, since the reaction is
shown to be endothermic at these temperatures. This might lead to the idea that the
temperature where the reaction gets exothermic is close to the spontaneous ignition
temperature. The DSC results show that the temperature at which this happens is
strongly dependent on the temperature at which the char was produced. This can be
an explanation for the wide spread of the results for the char experiments.
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Figure 4.19: Heats of reaction of three types of char as a function of temperature.

4.5.3 Application of Semenov’s analysis

It appears that Semenov’s analysis is able to describe the ignition phenomena in a
packed bed qualitatively. But when the heat produced by the reaction and the con-
vective heat losses depicted in figure 4.1 are known, Semenov’s analysis can be used to
determine the spontaneous ignition and critical air temperature also quantitatively.
In this section Semenov’s analysis is applied on the ignition of a packed bed of wood.

Semenov’s analysis starts with a reacting system at a uniform temperature. This as-
sumption has to be validated for the experiments. Thermocouple readings on top of
the grate and at 5cm above the grate in the bed differ only 2oC after 11 minutes of
heating a wood bed with 200oC air flowing at 0.3m/s. Figures 4.17 and 4.18 show that
the ignition times in case of wood are in the order of one hour. This shows that there
are no vertical temperature gradients just before ignition. The fuel bed is wide enough
to assume that the horizontal gradients can be neglected as well. So the assumption
that the fuel bed is at a uniform temperature before ignition is justified.

The convective heat transfer flux is expressed as:

q̇ ′′
conv = h(Ta −Tb)As db (4.1)
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4.5 Evaluation

In which h is the heat transfer coefficient and As is the specific surface area of the
packed fuel. The heat transfer coefficient h can be found by the Nusselt-Reynolds
relation according to Bird et al. [17].

As has been said before, for temperatures below 300oC the decomposition of wood is
determined by the pyrolysis of the hemicellulose. The heat gained by the reaction can
be expressed as:

q̇ ′′
r eact = khc exp

(
−Ehc

RT

)
ρhc∆Hhb (4.2)

∆H is the heat of reaction and hb is the total height of the fuel layer in the reactor, ρhc

is the density of the hemicellulose in the wood, khc is the pre-exponential factor, Ehc

is the activation energy, R is the ideal gas constant and T is the temperature of the
wood. Because before ignition, a uniform temperature can be assumed throughout
the fuel bed, the height of the fuel bed is not important.

Most of the kinetic data found in the literature does not focus on the low temperatures
encountered in the spontaneous ignition experiments. However, Órfão et al. [63] have
carried out TG analyses on wood, cellulose, hemicellulose and lignin at low tempera-
tures. They give the kinetics for the pyrolysis of the three wood components in nitro-
gen but they also found that in air the pyrolysis reactions occur at lower temperatures.
They do not mention the kinetic data for hemicellulose in air, but it can be found by
fitting an Arrhenius equation on their TGA curve. The result is: Ehc = 107k J/mol and
khc = 8.9 ·108 1/s.
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Figure 4.20: Semenov’s analysis applied to the spontaneous ignition of wood for three air veloci-
ties.
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The heat gained by the reaction (equation (4.2)) is plotted in figure 4.20 with the thick
black line as a function of the bed temperature. The convective heat losses are (equa-
tion (4.1)) plotted for two air velocities (0.1m/s and 0.5m/s) with the two thin lines.
In both situations the critical air temperature and the ignition temperature of the fuel
bed can be seen. Also the measured ignition temperatures and the critical air tem-
peratures are shown for these two air velocities. Both situations can be compared to
situation b) in figure 4.1. The figure shows that the model is able to predict the critical
air temperatures well. However, it over-predicts the measured spontaneous ignition
temperatures by 5-10%. A straightforward reason for this over-prediction is that the
solid temperature is calculated with the model, while the gas temperature between
the solids has been measured. With solid phase runaway, the gas temperature is al-
ways lower than the solid temperature so the spontaneous ignition temperature is
measured too low. The over-prediction of the measured spontaneous ignition tem-
perature can also be caused by the inaccuracy in the kinetic data. Not many kinetic
data are available at these relatively low temperatures and that is why no kinetic data
could be found for the wood used in our experiments. Besides, the composition of the
forest residue used in the experiments is unknown. Because the predicted values are
very sensitive to the kinetics, an over-prediction of more than 10% is can be expected.
Because the trends and the phenomena seen in the experiments compare well with
the theory, it can be stated that the model is physically sound. To increase the accu-
racy of the predictions, more research on the details of the reactions is needed.

4.6 Conclusions

According to the objectives of the work, the conclusions can be categorized in three
main parts: (1) general results, (2) influence of key parameters and (3) spontaneous
ignition mechanisms. The general conclusions which can be drawn from the experi-
ments are summarized in table 4.2.

Table 4.2: Measured critical air and spontaneous ignition temperatures and ignition times for
wood, char and RDF.

wood chips char RDF
Tcr i t [oC ] 230−245 170−200 205−200
Ti g n [oC ] 230−255 155−190 220−245
ign. time [min] 5 2 60
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4.6 Conclusions

The effect of several key parameters on the ignition behaviour is experimentally in-
vestigated. The results can be summarized as follows:

• The primary air velocity has a significant effect on both the critical air tempera-
ture and the spontaneous ignition temperature. Increasing the primary air flow
velocity increases both temperatures. For high flow velocities the critical air
temperature and spontaneous ignition temperature tends to become constant;

• Addition of inert to the wood and char fuel bed increases the spontaneous igni-
tion temperature as well as the critical air temperature needed for the ignition;

• No significant influence of moisture content (up to 30w t%) on spontaneous
ignition behaviour for wood chips has been found;

• No significant difference in spontaneous ignition behaviour between small
(10−15mm) and medium (15−30mm) sized char particles has been measured.
No reliable results could be obtained with large (30−40mm) sized char parti-
cles.

With the help of Semenov’s analysis of thermal explosions the mechanisms determin-
ing the spontaneous ignition behaviour are derived. The main conclusions are:

• The spontaneous ignition behaviour is determined by the combination of con-
vective heat transfer between the primary air flow and the fuel bed and the heat
gained by the reactions in the fuel bed;

• For wood, the heat gained by the reactions is determined by the exothermic
hemicellulose pyrolysis. This causes the spontaneous ignition temperature to
be higher than the critical air temperature;

• For all experiments with char, the spontaneous ignition occurs at a tempera-
ture below the air temperature irrespective of the air flow velocity. If ignition
did not occur, the bed temperature will be below the air temperature. This in-
dicates that until ignition the reactions in the char are endothermic. This idea
is supported by DSC measurements on char;

• RDF shows a typical pre-ignition stage. This is probably caused by the inhomo-
geneous composition of this fuel.
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This chapter describes a newly developed model which predicts the
spontaneous ignition temperature of the fuel bed and the critical
temperature of the primary air at which the fuel bed ignites. The in-
fluence of primary air flow rate and addition of inert are modeled for
a packed bed of wood. From the model a dimensionless parameter is
derived in which all investigated parameters (fuel type, air flow rate
and inert fraction) are combined. This parameter appears to be suf-
ficient to describe both the spontaneous ignition and the critical air
temperature. The results from the model are validated with experi-
ments presented in chapter 4. The model over-predicts both the tem-
peratures by 6−7oC . However, the trends are predicted well. For char,
a minimum spontaneous ignition temperature is derived from DSC
measurements. The temperature at which the interaction of char and
oxygen from the air switches from endo- to exothermic seems to co-
incide with the spontaneous ignition temperature.

5
Spontaneous ignition modeling
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5.2 Theory

5.1 Introduction

In this chapter a model to predict the spontaneous ignition and the critical air tem-
perature of a packed bed of wood or char is described. The model is used to investi-
gate the influence of the air flow velocity and the amount of inert on the spontaneous
ignition temperature and the critical air temperature. Finally, the model results are
compared with experimental results from chapter 4.

5.2 Theory

The observed ignition phenomena presented in chapter 4 can be explained by Se-
menov’s analysis of thermal explosions and the two main parameters are: 1) the heat
gained by the reaction and 2) the heat lost by (convective) cooling. Details of this
theory are described in section 4.2.

Another explanation of the observed ignition phenomena might be that the pyroly-
sis gases form a flammable mixture with the incoming air (i.e. the pyrolysis gas is at
its lower flammability limit). In this case the ignition temperature is the temperature
at which the composition of the pyrolysis gases is a flammable mixture with the air
flow and the temperature in the bed should be above the ignition temperature. For
a higher air flow, more pyrolysis gases are needed to reach the lower flammability
limit and thus a higher bed temperature is needed. However, two TGA experiments
on wood carried out at Sintef [18] showed thermal runaway without ignition. One
experiment was carried out with an argon flow of 20ml /mi n and an oxygen flow of
5ml /mi n, the second experiment was carried out with an argon flow of 39.5ml /mi n
and an oxygen flow of 10.5ml /mi n. As a result, the experiments are carried out at an
oxygen concentration of 20% and 21% respectively. The sample temperatures and
the program temperature are displayed in figure 5.1. The TGA furnace is actively
cooled. The measured temperature profiles indicate solid phase thermal runaway.
If gas phase ignition would have been occurred, a sharp increase in temperature to a
high value would have been seen. Besides, no sharp increase in H2O concentration
is measured, indicating that no gas phase ignition has occurred. The thermal run-
away is controlled by the active cooling of the TGA furnace. The experiment with the
low flow rate shows a larger temperature overshoot than the experiment with the high
flow rate. From the low flow rate experiment, it can be concluded that no gas phase
ignition occurs at a temperature of even 280oC . The experimental results presented
in chapter 4 show that wood ignites with air temperatures as low as 230oC . It can be
concluded that this ignition is not primarily caused by gas phase ignition.
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Figure 5.1: Sample temperatures (black lines) and program temperature (grey line) versus time
for TGA experiments carried out at Sintef [18].

5.3 Modeling

As explained above, ignition is determined by the balance between two terms:

1. heat gained by the reaction

2. heat lost by (convective) cooling

These two terms are analyzed in this section.

5.3.1 Heat gained by reaction

The heat produced by the reaction equals:

q̇ ′′
r eact = K∆Hdb (5.1)

In which K is the overall reaction rate per unit volume, ∆H is the heat of reaction and
db is the height of the fuel layer in the reactor. In the next sections the reaction rates
for char and wood will be investigated into detail.

Char

Ismail and coworkers found that at low temperatures (< 125oC ) the interaction be-
tween pure oxygen and Saran (a type of polymer) char consists mainly of chemisorp-
tion of oxygen at the char surface [49]. At higher temperatures (between 125oC and
240oC ) also oxidation becomes important. Above 240oC oxidation is determining the
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5.3 Modeling

conversion. Although the used char as well as the oxygen concentration are differ-
ent in the spontaneous ignition experiments (which are carried out in air), the results
form Ismail et al. serve as a good indication of the occurring processes.

TGA experiments on three types of charcoal have been carried out at Sintef [18].
The charcoal samples are produced by heating wood pellets for three hours at either
350oC , 500oC or 650oC in a nitrogen environment. For the 500oC -sample, the TGA
results show a mass increase at 180oC , showing that chemisorption is faster than oxi-
dation, see figure 5.2. For the 350oC - and 650oC -sample, a negligible mass change is
found at temperatures above 160oC . This indicates that the chemisorption rate and
the oxidation rate are equal. However, the absolute rate of the two separate processes
can not be determined for the three samples.

The TGA results correspond with the findings of Bergström [16]. He determined the
ignition temperature, chemisorption rate and the CO2 release at ignition as a function
of the spruce wood char preparation temperature. The results are plotted in figure
5.3. He found that the ignition temperature is minimal for a production temperature
of 450oC . Besides, he observes a maximum reactivity for a production temperature
of 430oC . It can be seen that for production temperatures of 350oC and 550oC the
O2 uptake and the CO2 release are about the same. This is in line with the results
from the TGA experiments. The wide spread in the measured spontaneous ignition
temperatures for char [86] can be attributed to this high dependency of the ignition
phenomena on char production temperature. Since it is unlikely that all used char is
produced at the same temperature, fluctuations in ignition temperature from batch
to batch can arise.
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Figure 5.2: Mass profiles of char in a TGA in an oxidizing and inert environment. The tempera-
ture in the oven is also shown. Adopted from [18].

Despite the unknown kinetics, a lower boundary for the spontaneous ignition tem-
perature can be estimated with the help of the reaction heat of char oxidation. The

104



300 350 400 450 500 550
0

10

20

30

40

50

Production temperature [
o
C]

V
al

u
e 

[%
, 

%
O
]

 

 

O
2
 take up for fresh spruce char [%O]

O
2
 take up for decayed spruce char [%O]

loss on ignition [%]
CO

2
 release for fresh spruce char [%O]

300 350 400 450 500 550

100

150

200

250

300

A
u

to
 i

g
n

it
io

n
 t

em
p

er
at

u
re

 [
o
C

]

Figure 5.3: Some char reactivity and ignition parameters as a function of char production tem-
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Figure 5.4: DSC profiles of three different char samples. The vertical axis shows the measured
power which is produced or absorbed by the sample.

heat of reaction for the three types of wood charcoal in air is measured at the Univer-
sity of Twente using a balance from type Mettler Toledo DSC-823. The results can be
seen in figure 5.4. It can be seen that the charcoal interaction with oxygen switches
from endothermic to exothermic between 150oC and 200oC again depending on the
production temperature. From this data it can be concluded that the spontaneous
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5.3 Modeling

ignition of charcoal can not be lower than 150oC . This statement is supported by the
results from the spontaneous ignition experiments and by the findings of Bergström,
who found that the lowest spontaneous ignition temperature for charcoal is 150oC
for a production temperature of 450oC . It seems plausible to assume that the temper-
ature at which the reaction switches to exothermic coincides with the spontaneous
ignition temperature. This assumption also clarifies why the char bed temperature
is always lower than the air temperature when ignition did not take place, since the
reaction is still endothermic.

Wood

Wood reacts also complex, but the kinetics of several types of wood are well docu-
mented and can be measured more easily than those of charcoal. Often, wood pyrol-
ysis is modeled by the sum of the pyrolysis of its main components (i.e. hemicellu-
lose, cellulose and lignin), see for example the work of Grønli et al., Yang et al., Órfão
et al. and Branca et al. [40, 96, 63, 21]. Although the reported kinetics diverge to a
great extent, the reported temperature ranges at which the components pyrolyze do
not differ much. It appears that hemicellulose is the most reactive and decomposes
between around 220oC and 315oC [96]. Cellulose decomposes between 315oC and
400oC and lignin decomposes slowly over a wide temperature range (160oC −900oC ).
So for temperatures below 300oC , wood degradation can be attributed to hemicellu-
lose degradation to a great extent. The heat of hemicellulose pyrolysis is measured
by Beall [11]. He found a value of 159.9k J/kg for softwood hemicellulose pyrolysis in
nitrogen in the temperature range of 180−350oC .

The most important conclusions that can be drawn from these papers [40, 96, 63, 21,
11] are:

• the degradation of wood for temperatures up to 300oC can be attributed to the
hemicellulose degradation;

• wood pyrolysis is slightly exothermic at temperatures between 180oC and
350oC mainly due to the hemicellulose pyrolysis;

• the heat of reaction of hemicelluloses pyrolysis is 159.9k J/kg [11];

• between 320oC and 380oC the endothermic cellulose pyrolysis determines the
heat of reaction.

The kinetics of hemicellulose pyrolysis temperatures below 300oC can be expressed
as follows:

K = dρw

d t
= dρhc

d t
= khc exp

(
−Ehc

RT

)
ρhc (5.2)
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With ρw the density of wood, ρhc the density of the hemicellulose in the wood, khc the
pre-exponential factor, Ehc the activation energy, R the ideal gas constant and T the
temperature of the wood. Most of the kinetic data found in the literature do not focus
on the low temperatures encountered in the spontaneous ignition experiments. How-
ever, Órfão et al. [63] have carried out TG analyses on wood, cellulose, hemicellulose
and lignin at low temperatures. They give the kinetics for the pyrolysis of the three
wood components in nitrogen but they also found that in air the pyrolysis reactions
occur at lower temperatures. They do not mention the kinetic data for hemicellulose
in air, but it can be found by fitting an Arrhenius equation on their TGA curve. The
result is: Ehc = 107k J/mol and khc = 8.9 ·108 1/s.

5.3.2 Convective heat transfer

The convective heat transfer flux is expressed as:

q̇ ′′
conv = h(Ta −Tb)As db (5.3)

In which h is the heat transfer coefficient and As is the specific surface area of the
packed fuel. The heat transfer coefficient h can be found according to Bird et al. [17]
as follows:

h = k(1−φ)

dp

(
2.19Re1/3 +0.78Re0.619)Pr 1/3

with: Re = dpQ

ν(1−φ)

(5.4)

In this, ν is the kinematic viscosity of the air flowing through the bed, k is the thermal
conductivity of the air and Q is the superficial air velocity at the local air temperature
(which is the preheat temperature in this case). The term dp is an equivalent particle
diameter which is defined as:

dp = 6(1−φ)

As
(5.5)

It can be shown that for cubic particles the equivalent diameter dp equals the particle
diameter for a bed porosity of 0.67. This porosity is close to the porosities of packed
fuel beds found in practice. For spheres, this relation is true per definition.

Now the two needed heat fluxes are known from equations (5.1) and (5.3). The next
step is to derive relations for the spontaneous ignition and the critical air temperature.
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5.3 Modeling

5.3.3 Finding the critical temperature

At the critical point (point 2 in figure 4.1) the heat produced by hemicellulose pyrolysis
and the heat lost by convection have the same value and the same gradient. This can
be expressed as (with ∆q̇ ′′ = q̇ ′′

r eact − q̇ ′′
conv ):
d∆q̇ ′′

dT
= 0

∆q̇ ′′ = 0

(5.6)

From this system the spontaneous ignition temperature and the critical air tempera-
ture can be found.

When the relations (5.1-5.3) are substituted in (5.6), the system can be written as:
h As = khc Ehc

RT 2
si

exp

(
− Ehc

RTsi

)
ρhc∆H (gradient)

h As (Tsi −Ta,c ) = khc exp

(
− Ehc

RTsi

)
ρhc∆H (value)

(5.7)

From this set, the critical air stream temperature (Ta,c ) and the spontaneous ignition
temperature (Tsi ) can be found.

Tsi
R

Ehc
= θsi = 1

2

1

W−1(−Φ)

Ta,c
R

Ehc
= θa,c = 1

4

[
1+2W−1(−Φ)

W 2
−1(−Φ)

]

with Φ=
√

h As Ehc

4khcρhc∆HR

(5.8)

The dimensionless spontaneous ignition temperature θsi and the critical air temper-
ature θa,c are made by scaling the dimensional temperatures with Ehc /R. . The ex-
pression W−1(−Φ) is the −1-branch of the Lambert-W function. The parameterΦ can
be considered the ratio of the convective cooling (h As ) and a term defined by the heat

gained by the reaction
(

Ehc
khcρhc∆HR

)
.

The dimensionless critical temperature and spontaneous ignition temperature are
plotted in figure 5.5(a) against Φ. It will be shown later that in the experiments Φ
is in the order of 10−4. The plot shows that for Φ > 0.5 · 10−5 the temperatures only
increase slightly. On the other hand, for Φ < 0.5 · 10−5, the temperatures decrease
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quickly with decreasing Φ. This shows the large difference in spontaneous ignition
temperatures when there is no cooling (Φ= 0) or when just a little cooling is present.
The spontaneous ignition temperature is predicted slightly higher than the critical air
temperature. Figure 5.5(b) shows the dimensional spontaneous ignition and critical
air temperatures as a function of the air velocity. Also here it can be seen that when
no air flow is present, spontaneous ignition can occur at very low temperatures. How-
ever, ignition times will be very long.
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Figure 5.5: The predicted dimensionless (a) and dimensional (b) critical air temperature and
spontaneous ignition temperature.
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5.4 Results and discussion

5.4 Results and discussion

The model is used to calculate the spontaneous ignition temperature and the critical
air temperature of a packed bed of wood chips. The results are compared with the
experimental results presented in section 4.4.1.

The values of the model parameters are summarized in table 5.1. With this data, the
spontaneous ignition temperature and the critical air temperature for wood can be
calculated. The results are plotted against Φ in figures 5.6(a) and 5.6(b). In the same
figure, the measured temperatures for wood are plotted as well. It is noted that these
temperatures are non-dimensionalized by multiplying by R/Ehc . Because both the di-
mensionless spontaneous ignition temperature and the critical air temperature only
depend on Φ, the experimental results have to be expressed by Φ as well. This makes
it straightforward to also include the experimental results from the wood chips with
added inert in the figures.

Table 5.1: Parameters for wood spontaneous ignition analysis. For wood pyrolysis, the hemicel-
lulose component is used. a The hemicellulose content in wood is around 30%, with a packed
density of wood of 200kg /m3, the packed density of hemicellulose is 60kg /m3. The properties of
air are at 200oC .

variable value ref.
khc 8.9 ·108 s−1 extracted from [63]
ρhc

a 60 kg /m3 est.
Ehc 107 k J/mol extracted from [63]
∆H 159.9 k J/kg [11]
As 260 m2/m3 est. from geometry
dp 9 mm calculated
Pr 0.68 [14]
ν 34.6 ·10−6 m2/s [14]
ka 0.039 W /mK [14]
φ 0.6 est.

The figures show a good comparison between the measured values and the model re-
sults. The figures also show that the results from the experiments with the added inert
follow the trend of the other results. This shows that the parameter Φ is an appropri-
ate parameter to describe the spontaneous ignition and critical air temperatures.
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(a) The calculated dimensionless spontaneous ignition temper-
ature (θsi ) for wood (line). The experimental data are shown as
well [86]. The ×-symbols denote the results for pure wood and the
©-symbols and ä-symbol denote the results for wood mixed with
20w t% and 40w t% inert respectively.

(b) The calculated dimensionless critical air temperature (θa,c )
for wood (line). The experimental data are shown as well [86]. The
+-symbols denote the results for pure wood and the ♦-symbols
andM-symbol denote the results for wood mixed with 20w t% and
40w t% inert respectively.

Figure 5.6: The calculated and measured dimensionless spontaneous ignition (a) and dimen-
sionless critical air temperature (b) for wood chips as a function of the air flow velocity.

5.4.1 Ignition time

The time needed for the bed to ignite can not be predicted by the current model, but
with an instationary energy balance the ignition times can be estimated as follows:

cp,b
dρbTb

d t
=∆q̇ ′′− dρm

d t
Hevap (5.9)
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With ρb the total (wet) density of the fuel bed, which decreases when the drying pro-
ceeds and r hom is the moisture density in the wood, Hevap is the heat of evaporation
of water en the subscript b denotes the bed properties. The heat flow needed for the
evaporation of the moisture can be modeled with a first order Arrhenius reaction ac-
cording to [22] with km = 5.13 ·10101/s, Eevap = 88k J/mol and ∆Hm =−2.44M J/kg .
The moisture content is defined as follows:

moi stur e = ρm

ρb
100% (5.10)

Differential equation (5.9) has been solved numerically with the values listed in table
5.1 as input parameters. Figures 5.7 shows the results for the ignition time according
to this equation for a dry fuel as a function of the air velocity for different air tempera-
tures. Figure 5.8 shows the results for the ignition time as a function of the air velocity
for different values of the moisture content.
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Figure 5.7: The ignition times predicted by equation (5.9) as a function of the primary air velocity
for different values of the air temperature for completely dry fuel.

The ignition time values found in the experiments are in the order of 5-10 minutes
with an air temperature of 503K . The figure shows that this value is under-predicted
for a dry fuel which is probably caused by not taking the heating of the steel reactor
wall into account. It is predicted that for an increasing air velocity, the ignition time
decreases. This is caused by an increased heat transfer coefficient, so the fuel heats
faster. An increasing air temperature decreases the ignition time which is also due to
an increased convective heat transport and a faster heating fuel. An increased mois-
ture content significantly increases the ignition time, which is clearly caused by the
time needed to dry the fuel. It is noted that the ignition temperatures are not likely to
change with changing moisture content, because at the moment of ignition nearly all
moisture is evaporated from the particles.
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Figure 5.8: The ignition times predicted by equation (5.9) as a function of the air velocity for
several values of the moisture content. The primary air temperature is 500K

In Semenov’s analysis a uniform temperature distribution inside the particles is as-
sumed. The time required to heat the core of the 1cm thick particles to 225oC with an
air temperature of 230oC is about 3 minutes while the calculated time to ignition is
less than two minutes. Hence, the assumption of an uniform temperature inside the
particles does not hold in this case. This will result in an under-prediction of the mea-
sured ignition times. However, due to the low heating rates used in the experiments
to determine the spontaneous ignition and the critical air temperature the times to
achieve ignition are an order longer, so uniform temperatures inside the particles will
occur in these experiments and thus Semenov’s analysis can be properly used.

5.4.2 Deep fuel bed

The model described in this chapter is a zero dimensional model. This means that
there are no temperature gradients in the fuel bed. Also the experiments which are
used to validate the model [86] are done with a shallow fuel layer to be able to assume
a zero dimensional process. However, in the experimental work described in chapter
4 also some experiments in a deep fuel bed are described. In this case, the tempera-
ture gradients along the height of the fuel bed can not be ignored. A remarkable result
from these experiments is that the fuel layer does not ignite at the grate.

For an air flow velocity of 0.2m/s, the ignition took place at 20cm above the grate
(see figure 4.12). With an air flow velocity of 0.3m/s ignition occurred 35cm above
the grate (see figure 4.13). This behaviour is probably caused by the conduction of
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Figure 5.9: The nett conductive flux over the length of a packed bed heated by a preheated gas
stream at several times. Q0 = 0.3m/s.

heat through the fuel bed. In this case, Semenov’s analysis (see figure 4.1) should be
extended with an extra heat flux, resulting from conduction. With the present (zero
dimensional) model, it is not possible to predict this, because conduction needs at
least one dimension. However, the conductive heat flux can be analyzed separately to
explain the effects seen in the experiments.

The nett conductive flux through a small slab of the bed can be expressed as (with x
increasing from the grate to the top of the fuel bed):

∆q̇ ′′
cond = kb

∂2Tb

∂x2 ∆x = ρbcp,b
∂Tb

∂t
∆x (5.11)

The second equality is Fouriers law. For an inert packed bed heated by a preheated
air stream, the nett conductive heat flux is shown in figure 5.9. The heat transfer co-
efficient from equation (5.4) is used again and the effective thermal conductivity of
the wood fuel bed is 0.054W /mK . The figure shows that the nett conductive flux has
a maximum which moves along the air stream direction. The maximum appears in
the region where the fuel bed heats the fastest (this can also be seen in the right hand
side of equation (5.11)). So, when the lower layers are heated up to the air stream tem-
perature, the convective flux is zero from that moment on and the maximum travels
downstream.

A similar figure can be made for several air velocities. This is seen in figure 5.10 which
shows the nett conductive flux along the bed after 2000 seconds for several air veloc-
ities. The figure shows that for an increasing velocity, the maximum nett conductive
flux is located higher in the bed. For an air velocity of 0.2m/s the peak lies around
0.28m and for an air velocity of 0.35m/s the peak can be found at around 0.38m.
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Figure 5.10: The nett conductive flux along the bed heated by a preheated gas stream for several
gas velocities after at t = 2000s.

These heights are close to the heights at which ignition is observed in the experiments
for these air velocities.

When the nett conductive heat flux would be included in Semenov’s analysis (figure
4.1), it can be shown that the ignition does not have to take place directly above the
grate. Due to the maximum conductive flux, which is higher up in the bed, the run-
away reactions might start there as well. To be able to predict the time and location of
ignition, it is recommended to develop a detailed transient 1D model.

5.5 Conclusions and recommendations

A theory is presented to describe spontaneous ignition seen in packed beds. An an-
alytical model is derived from this theory to calculate the critical primary air tem-
peratures and the spontaneous ignition temperatures for a packed bed of wood. A
parameter Φ is derived which is a ratio of convective heat loss and heat gain by the
reaction. The model over-predicts measured values of the ignition temperatures by
6−7%. Despite the over-prediction, the trends as a function of Φ are predicted well.
Results from spontaneous ignition experiments for wood with added inert also follow
these trends well. Although the accuracy of the value of Φ needs to be improved for
the current situation, it is shown that the parameter is able (and sufficient) to describe
the spontaneous ignition temperature for wood.

With the presented theory, the ignition phenomena occurring during char experi-
ments can be explained, however, no quantitative analysis can be given. It seems
plausible to assume that the temperature at which the heat of reaction of char oxida-
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tion becomes exothermic coincides with the spontaneous ignition temperature. This
temperature depends strongly on the char production temperature and is between
150 and 200oC . The interaction between char and oxygen should be studied further.
This will result in a more accurate description of reaction kinetics and heats and pre-
dictions can be made for spontaneous ignition of char as well.

In general, air preheating is only used in the drying zone of a municipal waste or
biomass incinerator. The waste approximately needs 20 minutes to travel through
this zone so when primary air temperatures higher than 230oC are used ignition can
(and will, in case of only dry wood) occur already in the first half of the drying zone.
Ignition in the first zone can even happen with wood with a moisture content of 50%.
It has to be kept in mind that waste has a higher moisture content than the wood used
in the experiments and also the kinetics and heat of reaction will be different. How-
ever, RDF showed a lower spontaneous ignition temperature and a shorter ignition
time than wood [86].

Despite the fact that at very low air velocities, the needed air temperature to ignite
the wood or RDF is the lowest (see figure 5.5) the time needed for ignition is very long
(see figure 5.7). An optimal combination of the air velocity and temperature should
be found.
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To gain insight in the startup of a waste incinerator, this chapter deals
with piloted ignition. This type of ignition is especially relevant at
startup procedures, because an external ignition source (a pilot) is
present in the form of startup burners. A newly developed model is
described to predict the piloted ignition times of wood, PMMA and
PVC. The model is based on the lower flammability limit and the adi-
abatic flame temperature at this limit. The incoming radiative heat
flux, sample thickness and moisture content are some of the used
variables. Not only the ignition time can be found with the model, but
also the mass flux and surface temperature at ignition. The predicted
ignition times agree reasonably well with experiments for softwoods.
For hardwoods, PMMA and PVC the predicted ignition times agree
well with experimental results. Due to a significant scatter in the ex-
perimental data the mass flux and surface temperature found with
the model are hard to validate. The model is applied on the startup
of the combustion process in a municipal waste incineration plant.
For this process a maximum primary air flow is derived. When the
primary air flow is above this maximum air flow, no ignition can be
obtained.

6
Piloted ignition
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6.2 Literature review

6.1 Introduction

The startup of a waste incineration plant is a time consuming process and usually
oil or gas fired startup burners are used. Generally, these burners have a (combined)
power of about 60% of the thermal input of the waste incineration and are located
about 10 meters above the fuel bed [35]. To heat up the flue gas cleaning train to
operating temperatures, the waste is not fed until the furnace temperature reaches
850oC .

High carbon monoxide emissions may occur during startup of the waste combustion
process. Carbon monoxide is mainly a product of a bad air to fuel ratio. When too
less air is fed, the fuel is incompletely converted which results in carbon monoxide
emissions. When too much air is provided, the fuel bed will be cooled down locally
which also may result in carbon monoxide emissions. During startup it is difficult
to determine how much waste is burning, so the required amount of primary and
secondary air is also hard to determine.

To improve the startup of a waste incinerator, knowledge of the ignition behaviour of
the waste is important. To investigate this, the piloted ignition times of several mate-
rials found in MSW is dealt with in this chapter. Firstly a literature review is presented
to get an overview of the available models to determine the piloted ignition times for
several materials. After this, a model is developed to calculate the ignition times for
wood, PVC and PMMA as a function of external radiative heat flux, material thickness
and moisture content. The model is validated with experimental data from the liter-
ature. The model also predicts the surface temperature of the sample and the mass
flux of the pyrolysis gases out of the sample at ignition. These results are also com-
pared to experimentally found values. After the validation of the model with lab scale
experimental results, the model is applied on the full scale waste combustion process.
A maximum primary air flow above which ignition can not occur is determined.

6.2 Literature review

A lot of research is done to find this so called time to ignition for all kinds of materials
and several models are developed to predict ignition times. To model ignition it is
inevitable to determine when a flame extinguishes and this is the fundamental point
where most of the models differ. We can divide the models found in the literature into
two groups:

• models that use (mostly) measured solid phase properties such as surface tem-
perature or mass flux out of the solid as a criterion for extinguishing (or igni-
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tion), see for example [82, 8, 12, 60]. In this case the behaviour of the ignition of
the gas phase is lumped to the solid phase.

• models that use flame properties such as flame temperature and stoichiometry
as a criterion for extinguishing, see for example [70, 5, 57].

The advantage of the models from the first group is that the results are more straight-
forward and close to engineering situations. The second group however is physically
more sound. The model presented in this chapter can be placed in the second group,
because it uses the adiabatic flame temperature and the lower flammability limit to
determine the threshold for extinguishing. Because the here developed model shows
strong resemblance with the models from Rasbash et al. [70], Atreya [5] and Lyon and
Quintiere [57], their models will be reviewed.

Rasbash et al. [70] calculated a critical mass flux of volatiles out of the material needed
for a flame which is in contact with a surface to sustain. They give two criteria for ig-
nition: (1) the flame temperature should be higher than a certain critical value and
(2) the heat losses from the flame may not exceed a critical value. For the critical
flame temperature they use the constant flame temperature of 1600K for most hy-
drocarbons close to extinction. This criterion for extinction is well founded by ex-
periments done by several researchers and is a "lower flammability like" criterion.
For the heat losses, they pose that the maximum allowed heat lost to the surface is
0.3 times the heat gained by the combustion for common organic vapors. It has to
be noted that they assume stoichiometric combustion. They calculate values for the
critical mass flux for PMMA of about 2g /m2s. Their experiments show critical mass
fluxes of 4−5.5g /m2s, so they under-predict the critical mass flux by a factor two. For
piloted ignition it seems more appropriate to assume the gas to ignite at the lower
flammability limit instead of stoichiometric conditions. The lower flammability limit
assumption will result in a higher required critical mass flux, because more energy is
needed to heat the excess air to the flame temperature.

The model for the critical mass flux from Atreya [5] is derived from the model from
Rasbash et al. Also Atreya assumes stoichiometric combustion. However, he does
not use the heat loss parameter introduced by Rasbash et al. Instead, he uses only
the constant flame temperature of 1550K for most hydrocarbons close to extinction.
Atreya calculates critical heat fluxes for wood of about 1.5g /m2s which he says are
somewhat lower than measured data from the literature. It is useful to note that the
used temperature criterion is valid for most hydrocarbons. For the pyrolysis gas from
wood, which is a mixture of CO, CO2, H2 and a fraction of hydrocarbons, this criterion
should be reconsidered. Also for MMA, which is the product of PMMA pyrolysis, this
criterion does not hold. Ishizuka and Tsuji [48] found that for hydrogen this flame
temperature close to extinction is 1013K . The flame temperature of pyrolysis gas from
wood close to extinction would be lower than 1550K , resulting in a under-prediction
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6.3 Theory

of the critical mass flux. Since Atreya still under-predicts the mass flux (with his higher
temperature) indicates that the stoichiometric assumption has more influence than
the temperature assumption. In other words: the amount of excess air which has to
be heated to the flame temperature has a stronger effect that the actual temperature
to which it should be heated.

Lyon and Quintiere predict the critical mass flux by using the more or less constant
critical energy density of 1.9M J/m3 for any hydrocarbon diffusion flame at the lower
flammability limit. This is an experimentally determined value. They use this crit-
ical energy density to calculate the lower flammability limit. As with the constant
flame temperature at the lower flammability limit, this criterion is not valid for gases
other than hydrocarbons. It can be easily shown that the used relation between the
energy density criterion and the lower flammability limit does not hold for for ex-
ample MMA (which has a critical energy density of 0.65M J/m3), CO (1.39M J/m3)
and H2 (0.44M J/m3). With their analysis, Lyon and Quintiere find a critical mass flux
(for transient ignition as they call it) of 1g /m2s for a wide range of plastics (includ-
ing PMMA) which is in line with the values they report from Drysdale and Thomson
[30]. However, Drysdale and Thomson use a different definition for the critical mass
flux and found a value of 1.80−2.04kg /m2s (note that this corresponds with the value
calculated by Rasbash et al. [70]).

The model presented in this chapter will only use properties of the gas at the lower ex-
plosive limit and the constant flame temperature approach from Atreya by including
other gases than hydrocarbons.

6.3 Theory

When a material is heated in for example a cone calorimeter it will start to release
mostly flammable gases. If the concentration of these flammable gases is high enough
to ignite (i.e. when the gases are above the lower flammability limit), a continuous
pilot such as a repeatedly fired spark will ignite the gases. From this moment, three
situations are possible:

• The just created flame does not have enough energy to sustain itself. More en-
ergy will be lost to the surroundings than the flame generates and the flame will
extinguish. This results in the flashes observed by Arteya [5] and Rasbash et al.
[70]. This will happen in early stages of heating when the flame looses much
energy to the solid surface which is still relatively cold.

• The flame does have enough energy to overcome the losses, but more gases
are burnt than created. This can happen when there is accumulation of gases
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around the pilot rather than a continuous stream of gases. This will also result
in a flash.

• The flame creates enough energy and the mass flow of gases out of the solid is
continuous and sufficient. This will result in a stable flame.

Figure 6.1 [27] is very useful to illustrate the three situations. The figure visualizes
several ignition parameters of a mixture of a flammable gas and air (or oxygen). The
x-axis denotes the temperature of the gas mixture and the y-axis gives the concentra-
tion of the flammable gas. In our case the interesting regions appear on the right side
of the saturation curve (temperatures higher than the flash point). For concentrations
below the lower flammability limit and above the upper flammability limit, the mix-
ture is not flammable. The auto-ignition temperature and the flame temperature are
drawn as a function of the concentration. At the beginning of the heating of a sample
in the cone calorimeter, the gas around the pilot is at point 1 (the temperature and
concentration are low). At a certain point, the concentration of the pyrolysis gases
might be at point 2. The gases are now on the lower flammability limit and will be
ignited by the pilot. If the heat produced by the flame is not enough (i.e if it does not
reach the auto-ignition temperature, see point 3), the flame will extinguish (the gas
will fall back to around point 1). If the flame temperature reaches the auto-ignition
temperature (point 4), a sustained flame is obtained.
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Figure 6.1: Relationships between various flammability properties. Adopted from [27]. The
flame temperature line and points 1-4 are added.

It is difficult to find the ignition temperature for a gas at its lower flammability limit.
Fortunately it can be shown that the ignition temperature is very close to the adiabatic
flame temperature at the lower flammability limit. A widely accepted view is that the
flammability limits are encountered when the reaction rate is less than a certain crit-
ical value [58]. Williams [95] combines this idea with a single step Arrhenius reaction
to describe the combustion reaction. He derives that the term exp(−E/RTad ) should
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6.4 The model

be above a critical value. When the activation energy E and the ideal gas constant
R are assumed constant as a function of temperature, the adiabatic flame tempera-
ture should be higher than a critical value (i.e. auto-ignition temperature) and the
flammability limits are found when the adiabatic flame temperature equals this auto-
ignition temperature.

However, when flammability limits are measured, heat losses are always present. This
means that the adiabatic flame temperature will never be reached and the measured
flammability limits will be narrower than expected. Indeed, it is widely recognized
that the flammability limits depend on the used apparatus [56]. Williams [95], how-
ever, posed that the amount of heat losses from a flame does not influence the limits
too much. Spalding [81] analytically determines how the temperature of an hydrocar-
bon flame at the lower flammability limit (LFL) behaves due to heat losses. With his
analysis and evaluation it can be found that:

T f l = 0.92Tad ,LF L (6.1)

Law and Egolfopoulos [56] approach this relation numerically and they found the fol-
lowing relations.

T f l = 0.942Tad ,LF L for a methane/air flame

T f l = 0.962Tad ,LF L for a hydrogen/air flame
(6.2)

This is a very useful property in our analysis because the adiabatic flame tempera-
ture at the lower flammability limit can be determined on forehand for a gas. With an
energy balance just after ignition, it can be calculated if the flame reaches the temper-
ature needed. In this analysis, the relation found by Spalding (6.1) is used. Because,
according to Williams, the heat losses have not much influence on the flammability
limits, the criterion is not very strict. It will be shown later that differences in model
predictions for the different criteria are small indeed.

6.4 The model

The purpose of the model is to find the ignition times for several materials as a func-
tion of incoming radiative heat flux, sample thickness and moisture content. To find
the ignition time several steps are carried out:

1. determine the adiabatic flame temperature (Tad ,LF L) at the lower flammability
limit of the pyrolysis gas. For this, the composition of the pyrolysis vapors has
to be known.
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2. calculate the temperature of the reacted gas-air mixture (T f l ) at the moment of
the pilot. (it is assumed that the gas is at the LFL at the moment of the pilot).
For this, the mass flux of pyrolysis vapors out of the sample has to be calculated.

3. if T f l > 0.92Tad ,LF L ignition occurs and the analysis is over, if not, the heating
and pyrolysis of the sample continues until T f l > 0.92Tad ,LF L ;

For point 2, the energy and mass balances of the solid phase are needed to calculate
the mass flux of pyrolysis vapors out of the sample. To calculate the temperature at
the moment of the piloted ignition the energy balance in the gas phase is needed. The
three steps are elaborated in the sections below.

6.4.1 Step 1: Adiabatic flame temperature

The adiabatic flame temperature at the lower flammability limit follows from:

Tad ,LF L = ∆H

cp,g (νLF L +1)
+T0 (6.3)

To evaluate this temperature, the composition of the pyrolysis products should be
known.

6.4.2 Step 2: Just reacted mixture temperature

The basis of the model are the energy and mass balances for the solid phase. The
sample with the mass and energy fluxes is shown in figure 6.2. In order to calculate
the temperature of the burning pyrolysis vapors, the mass flux out of the sample has
to be known. This mass flux on his turn depends on the temperature of the sample.
Firstly the energy balance of the solid phase will be derived and consequently the
mass balance of the solid phase will be given.

heat

mass

solidxd

Figure 6.2: Schematic overview of the solid phase.
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6.4 The model

Solid phase energy balance

The energy balance is given by:

cp,s
∂ρs T

∂t
= k∇2T − cp,g ṁ′′

g ,loc∇T − ∂ρs

∂t
∆H (6.4)

The local mass flux of gases through the particle at position x is denoted by ṁ′′
g ,loc .

Just before ignition, the pyrolysis reaction is still slow and the terms ṁ′′
g ,loc and ∂ρS

∂t
can be neglected in the energy balance. Besides, the thermal properties of the solid
are regarded constant with temperature. These simplifications result in the following
energy balance for the solid phase:

∂T

∂t
=α∇2T (6.5)

The boundary condition at one side is an adiabatic one and at the other side external
radiation comes in:

∂T

∂x
=−τ q̇ ′′

k
at x = 0

∂T

∂x
= 0 at x = d

T = T0 at t = 0

(6.6)

The energy balance consists of a standard heat equation with Neumann boundary
conditions at both sides. The parameter τ is explained below.

Beaulieu and Dembsey [13] state that, unless the pyrolysis vapors, all radiation emit-
ted by an external source reaches the particle. They embedded a Schmidt-Boelter
gage in the sample surface to measure the radiative heat flux reaching the particle.
Their results show that the heat flux only changes very slightly when the pyrolysis
starts. However, pyrolysis gases can condensate on the cooled gage and the conden-
sation released energy will be interpreted by the gage as radiation. This will result in
an over-prediction of the actual radiative heat flux.

Kashiwagi [51] measured that a significant part of the radiation is blocked by the gas.
He measured a attenuation of radiation by the pyrolysis gas as high as 80% for PMMA
at high heat fluxes (up to 174kW /m2). His findings are in line with the ones from Di
Blasi [19]. Park and Tien [65] are able to predict the measured transmittances from
Kashiwagi. The radiative flux q̇ ′′ has to be multiplied with the transmittance τ of the
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gas. The transmittance is defined as the fraction of radiation which is transmitted
through the gas. Because the value of the transmittance is not precisely known, a
sensitivity analysis will be done.

Solid phase mass balance

The mass balance of the solid fuel is given by:

∂ρs

∂t
=∑

i
Ki +D∇2ρs

with Ki =−ki exp

(
− Ei

RT

)
ρ

ni
i

(6.7)

The initial condition is:
ρs = ρ0 at t = 0 (6.8)

In this, Ki are the reaction rates of the several pyrolysis reactions and D is the diffu-
sion term for pyrolysis gases coming out of the sample. As has been said before, just
before ignition, the reaction is still slow and the diffusion term can be assumed to be
infinitely fast compared to the reaction. The mass balance is now determined by the
pyrolysis reaction(s) and all gases which are formed due to this are transported out of
the particle infinitely fast.

The total mass flux out of the particle (with infinitely fast diffusion) is given by:

ṁ′′
g =

∫ d

x=0

∂ρs

∂t
d x (6.9)

With some assumptions, the mass and energy balances can be solved analytically,
but this will result in very complex and maybe too simplified relations. Therefore, the
balances are solved numerically by finite differences.

Gas phase

The energy balance in the gas phase just after ignition is (per unit mass of gas):

Aṁ′′
g cp,g (νLF L +1)(T f l −T0) = Aṁ′′

g∆H −h A(T f l −Ts ) (6.10)

The solid surface temperature is denoted with Ts . With this equation the tempera-
ture of the gas mixture (T f l ) at the moment of the pilot can be determined. However,
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in general the pyrolysis gas is a mixture of a wide range of components. The com-
position of this mixture depends, among others, on the pyrolysis temperature. The
equivalence ratio at the lower flammability limit, heating value and specific heat are
the average values in the mixture. In most practical cases, one component is available
abundantly (e.g. MMA in PMMA pyrolysis) and the gas can be assumed to completely
consist of this component. With this approximation, which has to be made for every
type of solid fuel, the properties of the pyrolysis gas can be determined.

From the energy balance (6.10) it follows that the flame temperature at the moment
of the pilot is:

T f l =
Tad ,LF L +TsΦ

1+Φ
with Φ= h

ṁ′′
g cp,g (νLF L +1)

(6.11)

If the heat losses to the solid (h) are zero, equation (6.11) gives the adiabatic flame
temperature.

6.4.3 Step 3: Ignition?

If the criterion from Spalding (equation (6.1)) is fulfilled, ignition is obtained. When
the T f l is substituted in that criterion, the result is:

Tad ,LF L +Ts (ti g n)Φ(ti g n)

1+Φ(ti g n)
= 0.92Tad ,LF L (6.12)

The time at which this is true is defined as the ignition time ti g n . Equations 6.7 and
6.9 are used to calculate the mass flux and equation 6.5 is used to calculate the surface
temperature. The radiative heating of the gases is neglected due to the relative small
distance between the sample and the pilot. The transient system is solved by finite
differences until the criterion from 6.12 is fulfilled.

6.5 Results

Beaulieu et al. [13] measured ignition times for several materials as a function of dif-
ferent heat fluxes. They used a modified cone calorimeter apparatus for this. From
this research, the results for pine, PMMA and PVC are used to validate the model from
section 6.4. Also data from Harada [41] on pine, hiba abor-vitae and oak, data From
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Kashiwagi [51] on oak and PMMA and data from Rhodes and Quintiere [73] on igni-
tion times for PMMA are used for validation. The used model parameters are listed in
table 6.1.

Table 6.1: The data used in the calculations. a Pyrogas consists of 40 vol% CO, 30 vol% CO2,
15 vol% ≥C7 and 10 vol% CH4 [62]. Properties of this mixture is the sum of the components
contribution. b The equivalence ratio at the lower flammability limit is derived from the lower
flammability limit itself. c The PVC pyrolysis gases are mainly heavy hydrocarbons. Because the
relevant properties of heavy hydrocarbons do not differ to much, octane is chosen as a modeling
gas.

hardwood softwood PMMA PVC
oak pine

zelkova hiba abor-vitae
ρs (kg /m3) 750 [41] 420 [14] 1190 [38] 1380 [14]
ln(k1/s−1) 6.84 [40] 6.36 [40] 21.89 [32] 34.13 [80]
E1(k J/mol ) 100 [40] 100 [40] 190 [32] 388.2 [80]
ρ1,0 0.28ρ0 [40] 0.34ρ0 [40] 0.0303ρ0 [32] 0.193ρ0 [80]
n1 1 1 1.9 [32] 1 [80]
ln(k2/s−1) 17.97 [40] 17.40 [40] 27.01 [32] 7.59 [80]
E2(k J/mol ) 236 [40] 236 [40] 263.7 [32] 110.4 [80]
ρ2,0 0.34ρ0 [40] 0.35ρ0 [40] 0.0187ρ0 [32] 0.377ρ0 [80]
n2 1 1 2.19 [32] 1 [80]
ln(k3/s−1) 0.60 [40] 0.53 [40] 10.657 [32] 8.5 [80]
E3(k J/mol ) 46 [40] 46 [40] 118.9 [32] 149.8 [80]
ρ3,0 0.14ρ0 [40] 0.11ρ0 [40] 0.337ρ0 [32] 0.316ρ0 [80]
n3 1 1 1.30 [32] 1 [80]
ln(k4/s−1) 10.05 [40] 9.15 [40] 15.976 [32]
E4(k J/mol ) 127 [40] 105 [40] 199.2 [32]
ρ4,0 0.03ρ0 [40] 0.01ρ0 [40] 0.614ρ0 [32]
n4 1 1 1.21 [32]
α(mm2/s) 0.188 [82] 0.12 [14] 0.10 [38] 0.11 [14]
k(W /mK ) 0.19 [14] 0.15 [14] 0.18 [38] 0.15 [14]
modeling gas pyogas a [62] pyogas a [62] MMA est. octane c est.
∆H(M J/kg ) 10.8 calc. 10.8 calc. 26.7 [93] 44.9 [47]
νLF L

b 13.3 calc. 13.3 calc. 15 [67] 25 [47]

Figure 6.3 shows the results for the hard- and softwoods from Beaulieu et al. (pine),
Harada (pine, hiba abor-vitae, red oak and zelkova) and Kashiwagi (oak). It can be
seen that the experimental data for softwoods shows a rather large scatter. This can
be caused by differences in the experimental method or wood type used by the two
researchers. The calculated ignition times are lower than the measured values. The
trend for softwood is predicted reasonably well.

127



6.6 Discussion

For hardwood the data from the two researchers agree well with one another. It is
noted that the sample thickness (10mm or 20mm) does not influence the ignition
time for the heat fluxes used. The calculated ignition times from the model corre-
spond well with the experimental results.

Figure 6.4 shows the measurement data from Beaulieu et al. (PMMA and PVC), Kashi-
wagi (PMMA) and Rhodes et al. (PMMA) and the calculation results from the model.
The results from Kashiwagi differ a bit from the data from the other two researchers.
This can be caused by the different sample thickness. However, Kashiwagi poses
that for his experiments the samples can be regarded thermally thick [51]. A more
likely reason for the different results from Kashiwagi can be the different experimen-
tal setup. He uses a closed chamber in which the fuel is located. This means the py-
rolysis gases will accumulate above the sample, causing a lower transmittance. This
will result in longer times to ignition. For PVC only one set of data is found in litera-
ture. For PMMA the model is in good agreement with the results from Beaulieu et al.
and Rhodes et al. The data of Kashiwagi however is not well predicted. For PVC the
model over-predicts the experimental data for low to medium heat fluxes. This over-
prediction can be caused by the relatively unknown decomposition mechanisms of
PVC.

Harada [41] found that the time to ignition scales linearly with k2/α, which is 188 ·
103W 2/m4K 2 for softwood and 192 · 103W 2/m4K 2 for hardwood. These two values
are close together, so it is expected that the ignition times are close as well. However,
both the experiments and the model show a difference which is higher than can be
expected from this analysis. This indicates that not only the thermal properties, but
also kinetics play a role in the ignition times.

6.6 Discussion

6.6.1 Sensitivity analyses

Two sensitivity analyses are carried out. The first one deals with the uncertainty in the
transmittance, the second one deals with the variation of the ignition criterion.

In the description of the model in section 6.4, it is posed that not all radiation reaches
the surface. Kashiwagi [51] has measured how much radiation is blocked by the py-
rolysis gases. From his PMMA measurements it follows that only about 20%−50% of
the radiation is transmitted through the gas. Because of this uncertainty, a sensitivity
analysis is carried out.
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Figure 6.3: Results for several softwoods (black line and symbols) and several hardwoods (gray
line and symbols) with τ= 0.5. The experimental data is adopted from [13, 41, 51].
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Figure 6.4: Results for PMMA (black line and symbols) and PVC (gray line and symbols) with
τ= 0.5. The experimental data is adopted from [13, 73, 51].

Figure 6.5 shows the results of the model for four different values of the transmittance
of the gases. Also the experimental results presented in figure 6.4 are included in fig-
ure 6.5. The figure shows that for low radiative fluxes, the calculation with τ = 0.5
compares best with the experimental data and for high fluxes τ = 0.3 and τ = 0.2 do.
This result is in line with the findings of Kashiwagi that at low fluxes the transmittance
is higher than for high fluxes. This can be explained by the fact that with a higher flux,
more pyrolysis gas is created in a shorter time and the gas density will be higher. This
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6.6 Discussion

will result in a lower transmittance. For low heat fluxes, the pyrolysis gas has the time
to dilute, resulting in a higher transmittance. To make the model more accurate, the
transmittance τ in the model should be a function of the incoming radiative heat flux.
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Figure 6.5: Predicted ignition times for PMMA for several values of the transmittance of radiation
of the pyrolysis gas. Experimental data is adopted from [13, 73, 51].

Figure 6.6 shows the model results for the three criteria for the flame temperature
mentioned in equations (6.1) and (6.2). The figure shows that the differences between
the three criteria are very small. This shows that the ignition criterion is not very strict
indeed.
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Figure 6.6: Predicted ignition times for PMMA for the three criteria from equations (6.1) and
(6.2) with τ= 0.5. Experimental data is adopted from [13, 73, 51].
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6.6.2 Influence of sample thickness

In figures 6.7 and 6.8 the ignition time for respectively PMMA and PVC are plotted
as a function of sample thickness for five values of the heat flux. The figures show
that for heat fluxes higher than 120kW /m2 the thickness of the sample has hardly
any effect on the ignition time. On the other hand, for a heat flux of 20kW /m2 the
effect of sample thickness is considerable for samples thinner than 10mm. The figure
shows that in the heat flux range considered in this work, samples thicker than 10mm
can be regarded thermally thick. This conclusion is in line with the statement from
Kashiwagi [51] that his PMMA samples of 12mm are thermally thick. The figures show
that all PMMA and PVC samples used in the from literature cited experiments are
thermally thick.
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Figure 6.7: Predicted ignition times as a function of PMMA sample thickness for five heat fluxes.
τ= 0.4.
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Figure 6.8: Predicted ignition times as a function of PVC sample thickness for five heat fluxes.
τ= 0.4.
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6.6 Discussion

6.6.3 Influence of moisture content

The influence of the moisture content on the ignition times for red oak can be seen in
figure 6.9 for five heat fluxes. The moisture evaporation is modeled by a first order Ar-
rhenius equation with Am = 5.13 ·1010s−1, Em = 88k J/mol and ∆Hm =−2.44M J/kg
[22]. The diffusion of the water vapor out of the particle is assumed to be much faster
than the evaporation rate due to the relatively low thickness of the heated zone. It can
be seen that the ignition times significantly increase with increasing moisture con-
tent.
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Figure 6.9: Predicted ignition times as a function of the moisture content for red oak for five heat
fluxes. The sample thickness is 25mm and τ= 0.4.

6.6.4 Surface temperature and mass flux

Figure 6.10 shows the calculated surface temperature of PMMA and red oak at the
moment of ignition as a function of the incoming radiative heat flux. The slope dis-
continuities are caused by the iteration in the numerical solution method. It can be
seen that the surface temperature at ignition of both materials is almost independent
of the heat flux. Experimental data found in the literature are summarized in table
6.2. The measured surface temperature at ignition for PMMA seems to be rather re-
producible. However, the current model under-predicts the measured values from the
literature quite a bit. Besides, the trend is not predicted well. The measured temper-
atures for red oak show some more scatter, but the model predictions are within the
measured data. However, again, the trend is not predicted well. This can be caused by
a relatively long delay in ignition in the experiments with higher heat fluxes due to the
time needed for the gas to mix with oxygens. Another reason for the discrepancy can
be the few used experimental datasets from literature. It is difficult to derive a clear
trend from these sets.
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Figure 6.11 shows the mass flux out of the PMMA and red oak at ignition. Also the
mass flux is predicted to be independent of the heat flux. Measured mass fluxes from
the literature are summarized in table 6.2 as well. The model predictions compare
well with the data from Rasbash et al. [70] for PMMA and Bamford et al. [9] for wood.
In general it can be concluded that there is a wide scatter in the data summarized in
the table. Nelson et al. [59] review some measured mass flux data. They pose that the
results might be test-specific. Due to the scatter it is difficult to define either a critical
surface temperature or critical mass flux for ignition.

Table 6.2: Experimental data from the literature on surface temperature and mass flux at igni-
tion.

material Ts [K ] ṁ′′
g [g /m2s] q̇ ′′[kW /m2] ref.

PMMA 650−700 75−155 [51]
PMMA 520−550 4−5.5 12−28 [70]
PMMA 520−630 15−75 [45]
PMMA 1.80−2.04 13−33 [30]
red oak 780−700 75−155 [51]
red oak 553−623 27−76 [44]
wood 2.5 [9]
wood 4−5 [70]

[46]

[73]

[52]

[45]

[52]

Figure 6.10: The calculated surface temperature of PMMA and red oak at ignition as function of
the incoming heat flux. Experimental data from the literature is shown as well. τ= 0.5

6.7 Application on waste combustion

The presented model assumes that there is always just enough air to create a mixture
which is at its lower flammability limit. In a waste incineration plant, the amount of
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Figure 6.11: The calculated mass flux out of PMMA and red oak at ignition as function of the
incoming heat flux. τ= 0.5

available air is dictated by the primary air flow rate. In this case, it can not be assumed
that the created pyrolysis gases are at their lower flammability limit and therefore, this
lower flammability limit criterion is not fulfilled at any time. Besides, the criterion
for the adiabatic flame temperature presented in (6.12) can not be used in the case
of a waste incinerator plant because the pyrolysis gases are not always at the lower
flammability limit.

The two criteria for ignition in a waste incineration plant will be (and in any other gas
ignition case):

T f l ≥ Ti g n (6.13)

ṁ′′
g ≥ LF L ·ṁ′′

a (6.14)

The latter criterion can be fairly easily evaluated, because the air velocity ṁ′′
a is a

known parameter and when the waste composition is known, the LF L can be ap-
proximated. The gas flux ṁ′′

g can be calculated by equation (6.9). However, the first
criterion is more difficult because the ignition temperature is not known for any con-
centration of the pyrolysis gases (in fact, it is only known for the stoichiometric and
the lower flammability limit case). If it can be shown that the first criterion is met
before the second one, only the second one has to be considered. We can derive an
air flow at which both the criteria are just fulfilled. This air flow gives the transition
between the two criteria. The criteria are:

T f l = 0.92Tad ,LF L (6.15)

ṁ′′
g = LF L ·ṁ′′

a (6.16)

134



When (6.11) is used, the transition air flow can be shown to be:

ṁ′′
a,t =

h(0.92Tad ,LF L −Ts )

LF L ·Tad ,LF Lcp,g (1−0.92)(ν+1)
(6.17)

When the actual air flow is lower than this transition air flow, the gas mixture can
be beyond the lower flammability limit, but it has not enough energy to reach the
ignition temperature. In this situation, the second criterion (6.14) is fulfilled before
the first one (6.13). So the first one should be considered. On the other hand, when the
actual air flow is higher than the transition air flow, the gas mixture has enough energy
to reach the ignition temperature before the mixture is at the lower flammability limit.
In this case the first criterion (6.13) is met before the second one (6.14) and only the
second one should be considered:

ṁ′′
a < ṁ′′

a,t ⇒ criterion (6.13)

ṁ′′
a > ṁ′′

a,t ⇒ criterion (6.14)
(6.18)

With Ts = 300K the transition air flow for wood is 0.1kg /m2s and for PMMA it is about
0.05kg /m2s. The primary air flow rates generally encountered in waste incineration
plants are in the order of 0.3kg /m2s, which is higher than the transition air flow. This
means that in waste combustion only criterion (6.14) has to be considered.

For a surface temperature of 650K (which is about the temperature of the surface at
ignition for red oak, see figure 6.10) the transition air flow for red oak is 0.017kg /m2s.
Because this transition air flow is evaluated at the surface temperature at ignition, this
is the transition air flow for red oak in practice.

To calculate the ignition time in this case, the convective cooling of the air flow should
be included in the solid energy balance (6.4). The convective heat loss due to the
primary airflow is:

q̇ ′′
conv,loc = ha(Ts −Ta)As∆x (6.19)

In which ha is the heat transfer coefficient, Ta is the air temperature and As is the
specific surface area of the fuelbed. The heat transfer coefficient ha can be found
according to Bird et al. [17] as follows:

ha = k(1−φ)

dp

(
2.19Re1/3 +0.78Re0.619)

with: Re = dpQ

ν(1−φ)

(6.20)

Figure 6.12 shows the calculated ignition times for red oak as a function of the air flow
rate for several values of the radiative heat flux for red oak. As has been explained
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6.7 Application on waste combustion

before, below air flow rates of 0.017kg /m2s, the model is not valid due to another
ignition criterion, so no data is given there. At 0.017kg /m2s the results for the ignition
time are the same as presented in figure 6.3. For air flows higher than the maximum
air flow no ignition can be obtained. This is due to a limited gas mass flux out of the
solid fuel as can be seen in figure 6.13. This figure shows the mass flux out of a red
oak sample for several heat fluxes until the surface temperature reaches 1000K . The
profiles show a maximum depending on the radiative heat flux. If the air flow is too
high (higher than the maximum gas flux divided by the lower flammability limit), the
gas mixture will not be able to reach the lower flammability limit at any time. On the
other hand, when the air flow is too low, the upper flammability limit (UFL) might
be reached and no ignition can take place. In this case, criterion (6.14) is replaced
by: ṁ′′

g ≤ U F L · ṁ′′
a . For pyrogas, U F L ≈ 6LF L and when it is assumed that also at

the upper flammability limit Ti g n = 0.92Tad ,U F L is valid, it can be estimated that the
minimal air flow is ma,t

LF L
U F L = 0.0028kg /m2s for 20% moist red oak.

Figure 6.12: Predicted ignition times as a function of the air flow for red oak. Below 0.017kg /m2s
the model is not valid, so no data is given there. The right top zone is the zone where no ignition
can take place. The sample thickness is 25mm and τ= 0.4. The moisture content is 20% w.b.

With the air flow rates considered here, the heat lost to the air by convective cooling
is in the order of a few kW /m2. This heat loss is small compared to the radiative heat
flux. Hence, the problems with ignition are not caused by convective cooling, but by
the dilution of the gas mixture to values below the lower flammability limit.

This is useful information for the startup of a waste incineration plant. The air flow
should be kept between a maximal and a minimal value. To avoid a long heating time
and emissions, an high heat flux should be applied. Based on the calculations for 20%
moist red oak, it can be advised to keep the air flow at least above 0.0028kg /m2s and
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Figure 6.13: The calculated volatile mass flux evolution for red oak for several radiative heat
fluxes. The sample thickness is 25mm and τ= 0.4. The moisture content is 20% w.b.

below about 0.05kg /m2s (see figure 6.12). Even for relative high heat fluxes, the air
flow should be kept low during startup to not exceed the maximum air flow.

6.8 Conclusions

In this chapter, a model is presented to predict the ignition times for hardwood, soft-
wood, PMMA and PVC as a function of an incoming radiative heat flux. The criterion
for ignition is that the flame temperature of the just reacted volatiles is 0.92 times the
adiabatic flame temperature at the lower flammability limit. Conclusions which can
be drawn from the model are:

• A model is developed to calculate the ignition times, surface temperatures at ig-
nition and mass fluxes at ignition for several materials as a function of moisture
content, primary air flow and incoming radiative heat flux.

• Comparison with experiments from literature showed that the model predicts
the ignition times reasonably well. The model prediction for soft wood seems
on the low side. For hard wood the predictions agree with the experimental
results. Ignition times for PMMA are well predicted. The ignition times for PVC,
however, are slightly over-predicted.

• The model results show that the ignition time decreases with lower moisture
content and higher incoming heat flux. The sample thickness only has signifi-
cant influence for low heat fluxes and sample thicknesses below 7mm
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6.8 Conclusions

• The model predicts that the surface temperature and the mass flux at ignition
are both independent of the incoming radiative heat flux. However, compari-
son with literature data is difficult due to a significant scatter in this data.

• The model is applied on the ignition of municipal waste on a grate and a min-
imum and maximum primary air flow is derived. When the primary air flow is
not between these two limits, no ignition can take place. The maximum air flow
decreases with increasing incoming radiative heat flux.

• It is unlikely that the cooling effect of primary air flow results in a difficult igni-
tion. This can rather be attributed to the dilution of the pyrolysis gases by the
primary air flow.
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Some mechanisms during ignition of solid fuels and packed beds are
discussed in the previous chapters. In this chapter this knowledge is
translated back to waste incineration.

7
Application on waste combustion
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7.1 Introduction

7.1 Introduction

The objective of this work is to gain insight in the ignition process of municipal solid
waste. Based on the knowledge gained from the previous chapters from this thesis,
important material properties which determine the ignition phenomena are derived.
As described in the first chapter of this thesis, MSW is an inhomogeneous fuel, while
most models are based on a homogeneous fuel bed. The effect of the inhomogeneity
of a fuel bed on the ignition phenomena is described in this last chapter.

In the first part of this chapter attention is paid to the shape of the ignition front.
The influence of mixtures of different materials is investigated. In the second part an
expression for the location where the front hits the grate is derived. It is shown that
the currently developed two dimensional model for the front movement predicts it
to hit the grate sooner than the generally applied one dimensional model. In the last
section of this chapter some guidelines for the initial startup are derived.

The combustion and ignition of waste on grate can be described by several charac-
teristic lengths. Figure 7.1 shows these characteristic lengths: L f l is the distance from
the entrance of the furnace to the flame and L f is the distance from the entrance of
the furnace to the ignition front. Because this distance is not the same over the bed
height is is expressed as a function of this bed height h. The flame at the surface of
the fuel bed at L f l is caused by piloted ignition under a radiative heat flux. Chapter
6 deals with piloted ignition and can be used to estimate L f l . In chapter 3 a model
is developed to calculate the velocity of the ignition front inside the fuel bed and this
chapter can be used to estimate L f (h). The location where the front hits the grate is
L f (Hb).

Lfl

ignition front

fresh 
waste

movement

burning waste

L (h)
f

h
Hb

Figure 7.1: Several characteristic lengths describing the waste combustion process. L f l is the
distance from the entrance of the furnace to the flame and L f (x) is the distance from the entrance
of the furnace to the ignition front as a function of the bed height h.
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7.2 Ignition of flames

To predict L f l the horizontal velocity of the fuel bed should be multiplied by the time
to (flaming) ignition. Section 6.4 describes a model to predict the time to ignition for
a certain material as a function of the incoming radiative heat flux. When this heat
flux and the horizontal velocity of the waste are known, the location of the flames can
be estimated. When the radiation of the flame is taken into account, the location of
the flame can be estimated at any time with this method.

CFD calculations carried out by van den Broek [87] show that in the first zone the
radiation on the fuel bed is between 150 and 200kW /m2. If we now use the model
described in chapter 6 a time to ignition can be calculated. However, figure 6.12
shows that for 20% moist red oak particles the primary air flow should not exceed
0.23kg /m2s (0.19m/s) to obtain ignition. As has been explained in chapter 6, beyond
this velocity no ignition can take place at radiative heat fluxes below 200kW /m2 be-
cause the concentration of the flammable vapors is too low compared to their lower
flammability limit. This maximum air flow of 0.23kg /m2s is in the order of the one
generally applied in the first zone of waste incinerators. Note that waste also contains
inert components. This will result in less flammable gases and thus even less primary
air is needed to dilute the gases below their flammability limit. From this it follows
that the maximum primary air flow will be even lower in the case of a higher inert frac-
tion. Very close to the flame, the radiative heat flux will be higher than 200kW /m2 and
figure 6.12 shows that in this region, the maximum primary air flow increases rapidly
with increasing heat flux and a flammable mixture can be reached at higher primary
air flows. This means that in practice, the location of the flames (L f l in figure 7.1) is
likely to be determined by the point where the maximum air flow is larger than the
primary air flow. It can be expected that this will be close to the flame.

7.3 Ignition front movement

For the stability of the process it is useful to be able to predict (and influence) the
location of the ignition front. For example: if the flames are too close to the entrance
of the furnace, the risk of chute fire exists. But not only the location of the flames is of
interest, also the location of the front deeper inside the layer is important to ensure
proper burnout.

The movement of the front can be split up in a horizontal and a vertical component
(the movement in the third direction is left out this analysis) as has been shown in
chapter 3.2. The following can be derived for the location of the front L f (x) (see also
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7.3 Ignition front movement

figure 7.2):
dL f

dh
= vb,h(h)− vh(h,L f (h))

vb,v (h)− vv (h,L f (h))
(7.1)

L (h)
f

h v   (h)-v (h,L (h))b,h h f

v   (h)-v (h,L (h))b,v v f

Figure 7.2: The two components of the ignition front movement at position (h,L f (h))

In practice the velocity of the bed (vb,h and vb,v ) are functions of the bed height. How-
ever, the average superficial bed velocity is considered here. This means that vb,v = 0
and vb,h(h) = vb , with this assumption, local mixing is eliminated. Note that the val-
ues for vh and vv should be considered at the ignition front at position h: (h,L f (h)).
This makes it difficult to integrate the expression.

Because equation (7.1) does not give the location of the front explicitly, one point of
the front should be known to predict the ignition front contour. A straightforward
choice for this point is L f (0). This point is a function of thermal and chemical prop-
erties of the fuel bed, furnace radiation and bed velocity. Details on this can be found
in section 3.5.4.

To find the movement of the front, next to the value of L f (0), also the front velocities at
all location along the ignition front should be known. As an alternative to this, average
front velocities can be used. Both options will be discussed in the next sections.

7.3.1 Local front velocities

In chapter 3 it is derived that the ignition front velocity is determined by two pro-
cesses:

• the time needed to achieve glowing combustion;

• the heat transfer inside the fuel bed.

Several researchers [101, 85] determined that, especially for small particles, glowing is
likely to start when most of the particle is pyrolized. When the pyrolysis reactions are
faster than the heating of the fuel, the time needed to achieve glowing combustion
(which can also be called the time to glowing ignition) is determined by the thermal
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mass of the fuel bed (ρbcp,b). This is true for high heating rates or thermally thick par-
ticles. The analysis in chapter 6 showed that for the heat fluxes generally encountered
in waste combustion, particles thicker than 10mm can be regarded thermally thick.
So generally it can be assumed that in waste combustion the time to glowing ignition
is determined by the thermal mass ρbcp,b

For some fuel beds the heat transfer inside the fuel bed is determined by the actual
thermal conductivity of the fuel bed (for example dense beds). For other fuel beds
the radiation inside the fuel bed determines the heat transfer inside the bed. In both
cases the heat transfer inside the bed can be expressed as ke f f /d f . For a more de-
tailed analysis, the reader is referred to section 3.2. The ignition front velocity for a
homogeneous fuel bed can be approximated by the ratio of the effective thermal con-
ductivity (which is either radiation or conduction) and the time to glowing ignition
(which is determined by the thermal mass of the fuel bed for particles larger than
10mm, as described before):

v f ≈
ke f f

d f ρbcp,b
= αe f f

d f
(7.2)

For a more precise prediction, equation (3.17) can be used.

In figure 7.3 the two processes listed above are estimated for several bed materials.
In the lower (grey) part of the figure materials are located through which no ignition
front can travel. These materials are either inert, or they have a too low char content
such as most plastics. The higher the thermal mass, the lower these materials are in
the figure. The upper (white) part of the figure lists the materials through which an
ignition front is able to propagate. As can be seen with the help of equation (7.2),
ignition fronts in materials which are more to the upper-right part of the figure have
a higher velocity than ignition fronts in materials close to the origin of the graph.

Inert materials

Also inert materials have a value for ke f f and ρcp but obviously, no ignition front can
travel through these materials. When an inert material is added to a charring material
it depends on the properties of the inert material whether it will speed up or slow
down the ignition front. The properties of the mixture can be estimated by averaging
the properties of an inert particle with the properties of the neighboring fuels over a
thickness of the combustion front. It can be derived that if too much inert is present it
is impossible for an ignition front to propagate. Figure 7.3 shows that this is the case
when the properties of this average material are in the grey zone. This will be the case
if the heat gained by the char oxidation is smaller than the heat lost by the relatively
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7.3 Ignition front movement

cold primary air flow. With the help of equation 3.17 from chapter 3 the front velocity
through this average material can be determined.

dense 
wood bed

no glowing

glass, stone metals

light 
wood bed

wood bed

non-charring
plastics

increasing 
front speed

keff

1
ρ 

b p,b
c

Figure 7.3: Schematic view of the time to achieve glowing (ρb cp,b ) and effective heat transfer
(ke f f ) for several bed materials.

Inhomogeneous fuel bed

For an inhomogeneous fuel bed no clear single ignition front can be observed. This is
caused by the mixture of fuels with a different αe f f (if we assume d f to be constant)
resulting in different ignition front velocities through these materials.

When the ignition front velocities in both directions are known in all locations of the
bed and L f (0) is known, the front shape can be determined with equation (7.1).

7.3.2 Average front velocities

For an inhomogeneous fuel bed which composition is continuously changing the ex-
act location of the ignition front at any time is not that important. More important
is where the ignition front hits the grate. When an isotropic waste layer is assumed
(which is reasonably for large volumes), an average front velocity v f can be used to
predict the average location where the ignition front hits the grate so the grate can be
prepared for high temperatures. Because the average v f is no function of x anymore,
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equation (7.1) can be integrated when v f is substituted:∫ L f (h)

L f (0)
dL f =

∫ h

0

(
vb(h)

v f
−1

)
dh

with: v f =∑
i

v f ,i
3
p
χi

(7.3)

As has been explained before, the bed velocity is regarded uniform, so vb(h) = vb . In
this equation L f is the average front location and χi is the volume fraction of compo-
nent i. Note that the velocity is averaged over a length and not over a volume. Hence
the velocity is proportional with the cube root of χi . Solving equation (7.3) results in:

L f (h) = h

(
vb

v f
−1

)
+L f (0) (7.4)

Comparison with the 1D situation

When a one dimensional approach is followed (no horizontal front movement:
vh(h,L f (h)) = 0 in equation (7.1)), the location of the front can be expressed as:

L f (h) = hvb/v f +L f (0) (7.5)

So when vb/v f >> 1 in equation (7.4) the influence of the horizontal propagating
front can be ignored and equation (7.4) reduces to the 1D situation (7.5).

As has been derived earlier, a first order approximation for the local front velocity is
vi ≈αe f f ,i /d f . Analogous to this, the average front velocity can be defined as:

v f ≈ αe f f

d f

with: αe f f =∑
i
αe f f ,i

3
p
χi

(7.6)

The relation for the average front velocity (7.6) can be substituted in equation (7.4) for
the 2D situation:

L f (h) = h

(
vbd f

αe f f
−1

)
+L f (0) (7.7)

and equation (7.5) for the 1D situation:

L f (h) = h
vbd f

αe f f
+L f (0) (7.8)
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7.4 Startup

Now, the horizontal propagating front can be ignored if vbd f /αe f f >> 1. Note that
vbd f /αe f f = Pe as has been used in section 3.2. In that chapter it is derived that
Pe ≈ 2 and two dimensional effects can not be ignored. Equations (7.7) and (7.8) show
that for Pe = 2, the front in the 2D situation is twice as steep as in the 1D situation.
This means that in the 2D situation the front is predicted to hit the grate earlier than
predicted by a 1D approach. A schematic view of the difference of the two predictions
is shown in figure 7.4.

L  (0)f

2D approach

1D approach

h b

small Pe

L  (0)f

2D approach

1D approach

h b

large Pe

Figure 7.4: Qualitative view of the difference of the two predictions for different Péclet numbers

In this figure it is assumed that L f (0) = 2 meters, Pe = 2 and hb = 1 meter. In the
1D approach it is calculated that the front reaches the grate at 4 meters from the fuel
inlet, while in the 2D approach this occurs at 3 meters from the fuel inlet.

The location of the ignition front can be influenced by either the bed velocity or the
bed properties (d f and αe f f ) which have all three a linear influence on the location
where the front hits the grate. The flame on top of the fuel bed can be moved by
varying the primary air velocity at the first zone. If it is made sure that the air velocity
in the first zone is high enough to not obtain ignition, the risk of a chute fire can be
reduced.

7.4 Startup

Up till now this chapter only deals with the continuous waste combustion process.
However, the initial startup of a waste incineration plant is important as well and
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should be as clean and short as possible. During this startup an auxiliary oil or gas
burner is used to heat up the furnace and to ignite the fuel bed. With the help of
the insight gained in previous chapters, something can be said about the ease of the
startup for several bed materials. It will be shown that despite some materials ignite
very easily, no sustainable ignition front can be achieved.

Figure 7.5 shows the piloted ignition time (vertical axis) and the ignition front velocity
(horizontal axis) for several bed materials. According to Harada [41], the ignition time
is linearly dependent on k2/α, so this is used in the figure. Note that these are not
effective or bed parameters, but parameters for the solid material.

The figure shows that several materials do not allow an ignition front to propagate,
even when these materials are easily ignited. This happens mostly for materials with
a very high volatile to char ratio such as plastics. Also some materials do not ignite in
the gas phase (flaming), but an ignition front can travel through it very fast. This is
the case for materials with an very low volatile to char ratio.

glass, stone

metals

wood

non-charring
plastics

methanol

char

eff

only glowing

inert only flaming

both

α

2

α
k

PMMA corrugated
fiberboard

critical mixture

critical mixture

Figure 7.5: Schematic view of the ignition front velocity and piloted ignition times for several
materials and mixtures.

During the 1D experiments in the glass tube described in chapter 3 it appeared dif-
ficult to ignite the wood bed by putting non-charring firebrands on top of the bed.
However, char soaked in methanol appeared to be a very effective way of igniting the
wood bed. This can be explained with the help of figure 7.5. The non-charring fire-
brands only ignite flaming but create no ignition front. On the other hand, char can
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7.6 Recommendations for further research

create a ignition front, but this is difficult to ignite. When the amount of methanol in
the char is between certain limits, the mixture is easy to ignite and is able to create an
ignition front.

This can be applied on the startup of a waste incinerator. To ensure a easily ignitable
fuel bed and the development of a stable ignition front, the initial mixture should be
in the upper-right quadrant.

7.5 Conclusions

The theories and models developed in this thesis are developed for model fuels and
uniform process conditions. However, the models can be applied on practical situ-
ations as occurring in municipal solid waste incinerators. The models and theories
show that in a full scale waste incinerator:

• the ignition front velocity is proportional to the thermal diffusivity of the fuel
bed;

• for small Péclet numbers, the ignition front is up to twice as steep as is predicted
by 1D models;

• the ignition of the waste layer at its surface is determined by the primary air
velocity at this zone;

• easy flammable materials do not ensure easy startup;

7.6 Recommendations for further research

Further research can be based on this work in two ways: (1) to validate the translations
done in the current work to full scale waste and biomass combustion and (2) to apply
the results to a full scale combustion process.

To validate the translations to full size waste and biomass combustion done in the
current work, measurements are needed in full size plants. Measurements of the gas
composition at several location in a full size burning fuelbed can reveal if flashback
in waste combustion does not occur in practice as is derived from models in chapter
2 Measurements of the influence of the furnace radiation on the ignition front veloc-
ity in an actual plant would give interesting data to complement the work done in
chapter 3.
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This work explores some possible ignition mechanisms in solid fuel combustion on a
grate in a rather fundamental way. Although translations to full scale waste combus-
tion are made in some chapters, the application of the results from this work on full
scale waste and biomass combustion requires more research. A possible topic could
be to find optimal process settings and fuel to reduce the emissions from the startup
of a furnace. Another topic could be to investigate the influence of ignition of the
waste by preheated primary air. This project has started in 2009 at the University of
Twente. Finally, the influence of local fuelbed properties on the ignition front velocity
requires further research to produce more detailed information on this relation.
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Nomenclature

A stoichiometric switch (0 or 1)
A surface area [m2]
As specific surface area [m2/m3]
C radiation constant [−]
cp specific heat [J/kg K ]
D diffusivity [m2/s]
d length [m]
dp (effective) particle diameter [m]
E activation energy [J/mol ]
E x excess energy parameter [−]
e emissivity [−]
F radiation exchange factor [−]
Hevap latent heat of evaporation [J/kg ]
h heat transfer coefficient [W /m2K ]

height [m]
K reaction rate [kg /m3s]
k thermal conductivity [W /mK ];
k pre-exponential factor [1/s]
kt total effective solid thermal

conductivity [W /mK ]
L characteristic length [m]
LF L lower flammability limit [m3/m3]
Lo loss parameter [−]
M molar mass [kg /mol ]
ṁ′′ surface mass flux [kg /m2s]
ṁ′′′ volumetric mass flux [kg /m3s]
Nu Nusselt number [−]
n order of reaction
p pressure [Pa]
Pe Péclet number [−]
Pr Prandtl number [−]
Q primary air velocity [m/s]
q̇ ′′ heat flux [W /m2]

R ideal gas contant, (8.314J/molK )
Re Reynolds number [−]
T temperature [K ]
t time [s]
v velocity [m/s]
x Cartesian coordinate [m]
Y mass fraction [−]

Greek symbols
α thermal diffusivity [m2/s]
∆H heat of reaction [J/kg ]
ε porosity [−]
η stoichiometric mass number

[kg /kg ]
θ dimensionless temperature [−]
κ radiation approximation term

[W /m2K 2]
ν kinematic viscosity [m2/s]
ν stoichiometric number [−]
ρ density [kg /m3]
σ Stefan-Boltzmann constant,

(5.67 ·10−8W /m2K 4)
τ transmittance [−]
φ equivalence ratio [−]
Φ ignition parameter [−]
χ volume fraction [−]
ψ dimensionless velocity [−]

Subscripts

0 initial, surrounding

a air

ad adiabatic

al alumina
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av g average

b bed

c char, critical

cond conduction

dr y dry

e f f effective

evap evaporation

f front

f l flame

f ur n furnace

g gas

h horizontal

hc hemicellulose

i component i

i inner

i g n ignition

LF L at lower flammability limit

loc local

m moist

o outer

p particle

r reactor

r ad radiation

s solid

s surface

s specific

sat saturation

si spontaneous ignition

t transition

tube tube

v vertical

w wood

w all wall
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